Firmware Tde Macno

User's manual **Frequency Response application n°14**

INDICE

1.	IDENTIFICAZIONE DEL SISTEMA NEL CRAFT	. 2
2.	RISPOSTA IN FREQUENZA - APPLICATIVO OPDE	. 4
2.1.	STEP DA SEGUIRE	5
2.2.	MATCH CON LA CURVA TEORICA	5
3. 3.1.	BANDA PASSANTE ANELLO DI VELOCITA' - APPLICATIVO OPDE	6 7

VERSION APPLICATION 14.01

Questo applicativo ha come obiettivo l'identificazione del sistema meccanico connesso al motore per poter poi decidere la migliore strategia di controllo.

L'applicativo nasce dall'esperienza maturata qualche anno fa nel progetto CRAFT.

1. IDENTIFICAZIONE DEL SISTEMA NEL CRAFT

In quella occasione si è individuato nel modello a 2 masse una semplificazione in grado di rappresentare fedelmente molte applicazioni esistenti.

Modello fisico

Modello matematico

Trascurando le non linearità, i parametri che definiscono questo modello sono:

b	lock-oriented	parameters P_B	normalised parameters P_N			
Name	Unit	Meaning Name		Unit	Meaning	
J_M	[kgm ²]	motor side inertia	$T_{AM,AL} = \frac{J_{M,L}\omega_N}{M_N}$	[2]	accelaration time of motor- /load side	
J_L	[kgm ²]	load side inertia	$V_J = \frac{J_L}{J_M}$	[]	inertia ratio	
с ₅	$\left[\frac{Nm}{rad}\right]$	spring constant	$\omega_{\theta} = \sqrt{C_{S} \frac{(J_{L} + J_{M})}{J_{L} J_{M}}}$	[<u>rad</u>]	natural frequency	
DS	$\left[\frac{Nms}{rad}\right]$	damping constant	$d_S = \frac{D_S}{2} \sqrt{\frac{(J_L + J_M)}{C_S J_L J_M}}$	[]	relative damping	
J_{Σ}	[kgm ²]	total inertia $(J_M + J_L)$	$T_A = \frac{J_{\Sigma} \omega_N}{M_N}$	[5]	total acceleration time	
J _{Mot}	[kgm ²]	inertia of motor only	$J_F = \frac{J_L J_M}{(J_L + J_M)}$	[kgm ²]	fictitious inertia	

Si arriva quindi alla seguente funzione di trasferimento vista dal motore:

$$G_M^N(s) = \frac{\omega_M^N(s)}{M_M^N(s)} = \frac{\left(1 + V_J\right)\left(\frac{s}{\omega_0}\right)^2 + 2d_s\left(\frac{s}{\omega_0}\right) + 1}{sT_A\left(\left(\frac{s}{\omega_0}\right)^2 + 2d_s\left(\frac{s}{\omega_0}\right) + 1\right)}$$

E' chiaro che avere la risposta in frequenza del sistema meccanico è la chiave per poter avere un modello esatto della realtà. Nel progetto CRAFT è stato quindi introdotto un test di identificazione del sistema: si controlla in velocità il motore linearizzando il sistema in un punto, per compensare gli effetti degli attriti. Il regolatore di velocità è tenuto blando per permettere le oscillazioni meccaniche. Viene quindi applicata una eccitazione di coppia con un segnale pseudo-casuale (PRBS) in somma al regolatore di velocità. La Risposta in Frequenza è determinata misurando la Funzione di Autocorrelazione (ACF) e la Funzione di Correlazione Incrociata (CCF) del segnale di test e dell'uscita del sistema,ed eseguendo la Trasformata di Fourier di queste funzioni.

				1				
Paramete	ers of PI-Speed	Controller	Set Defaults	20				
J_tot [kgm*2] 0.02971	0.005004	TN/Tsum 16	Set Speed Step	田 0				n- U matric
KP [Nms/rad]	TN [s]	Speed Control		<u>면</u> -20				In the second states
1.188	0.1001	🗖 On / Off	eset Speed Ste	⁶ -40	- # - - - - -			H-I- HIJPART
KP_PUS 2.498	POS. Monitor	Move to POS=0	Init POS=0	-60	10°	10 ¹	10 ²	
						f [Hz	<u>.</u>]	
	Experime	nt Control]				
Number of Experiments	Speed-Offset [rad/s]	Number of Samples	PRBS-Amplitude [Nm]	e 100				
15	15	2048 🔽	2	e de				",
Optimize Te	stsignal for	Reverse Spe	Set Defaults	er -100				141.
ruun_ex [112]	rmax_ex [rrz]	o r	Applu	Ë.			1 A 19	ويسجينه والقائلة
5	500	0.5	Арру	J	10 ⁰	10 ¹	10 ²	10
						f[Hz	<u>-</u>]	
Para	ameter Identifica	ation	E. C.			Identified Pa	rameters	
A p	riori	1			natural freq	uencyomega_0=	368.4 rad/s =>	f_e = 58.64
Know	ledge		Set Defaulte		ratio of iner	tia: V_J =	0.9965	~~ I
J tot=const	f e=const	1	Set Deraults		total inertia:	J_tot =	0.02699 kgm^2	
0.02971	58 55	1			relative dan	nping: d =	0.002319	I
		Contract Contract			viscous frict	tion: mue_F =	Nms/rad	
JV_J=const	d_S=const	timin timax	Apply		const. load:	ML_OTTS.=	1.071 NM	
0.9921	0.01	1 200	oppy					

Il risultato finale dell'identificazione era il seguente:

Non solo una precisa misura della risposta in frequenza, ma anche un calcolo automatico di tutti i parametri del modello.

2. RISPOSTA IN FREQUENZA - APPLICATIVO OPDE

Il nostro applicativo intende eseguire un test analogo utilizzando calcoli matematici più semplici.

Nella misura della risposta in frequenza lo schema è analogo solo che l'eccitazione di coppia è sinusoidale e mediante 2 filtri passa banda centrati sulla frequenza di lavoro, è possibile misurare l'ampiezza e lo sfasamento relativo tra l'ingresso e l'uscita.

Nella cartella "Test Parameters" è possibile definire i parametri delle misure:

Test Parameters									
Name	Value	Um	Default	Min	Max	Description			
N_SAMPLE	100		100	10	1000	Number of samples			
N_PERIOD	4		4			Periods Number for every measure			
PRC_BASE_SPD	5.0	%MOT_SPD_MAX	5.0	0.0	100.0	Test Base speed			
MAX_REV	100	revolutions	100	0	30000	Max number of revolutions			

Il numero di campioni totali nella misura (N_SAMPLE), il numero di periodi completi del segnale di eccitazione prima di memorizzare la misura (N_PERIOD), la velocità di base nel test (PRC_BASE_SPD) ed i giri massimi ammessi lato motore (MAX_REV) dopo i quali automaticamente verrà invertita la velocità.

Nella cartella "Frequency Responce" si indicano i dati specifici del test:

Frequency Responce									
Name	Value	Um	Default	Min	Max	Description			
EN_MEASURE	disable		disable						
F_START	10.0	Hz	10.0	1.0	1000.0	Minimum frequency detected			
F_END	200.0	Hz	200.0	1.0	1000.0	Maximum frequency detected			
PRC_TRQ_REF_F	5.0	%MOT_T_NOM	5.0	1.0	200.0	Torque Reference signal amplitude			
PRC_SPD_FMAX	0.0	%MOT_SPD_MAX	0.0			Minimum speed estimated at max test frequency			
PRC_SPD_FMIN	0.0	%MOT_SPD_MAX	0.0			Maximum speed estimated at min test frequency			

Si può impostare il range di frequenze di interesse (F_START – F_END): attenzione che poi i campioni di misura verranno automaticamente equispaziati sulla scala logaritmica.

Si setta poi l'ampiezza del segnale di eccitazione in coppia avendo un'immediata indicazione di quali saranno le ampiezze corrispondenti nella velocità.

2.1. STEP DA SEGUIRE

- 1. Eseguire la misura del tempo di avviamento del motore a pieno carico
- 2. Impostare il regolatore di velocità molto calmo (<= 1Hz)
- 3. Disabilitare sia il filtro del II ordine che assolutamente il filtro di notch
- 4. Partire con la misura della risposta in frequenza

Una volta completata la misura, premendo il pulsante "Read" saranno quindi visualizzati i grafici relativi all'ampiezza e allo sfasamento.

Cliccando con il mouse sui punti delle curve è possibile visualizzare in basso il valore istantaneo dell'ampiezza e della fase.

2.2. MATCH CON LA CURVA TEORICA

Al fine di ottenere la curva teorica che si avvicini il più possibile a quella misurata, è possibile impostare manualmente i 4 parametri che definiscono la risposta in frequenza:

Frequency (Hz)	21.8		
Start time (ms)	725		
Rapporto inerzie	1.6		
Smorzamento	0.03		
OK		Cancol	1

La curva teorica è visualizzata in rosso, quella misurata in blu:

Lo Start time (Tempo di avviamento complessivo, P169) determina la curva prima del picco di antirisonanza, il rapporto di inerzie la curva dopo il picco di risonanza e la distanza tra i picchi, la frequenza va posta sul picco di risonanza e lo smorzamento fissa l'ampiezza dei picchi.

In questo modo si può ottenere una completa identificazione del sistema meccanico.

3. BANDA PASSANTE ANELLO DI VELOCITÀ - APPLICATIVO OPDE

E' possibile anche misurare l'effettiva banda passante del regolatore di velocità, lavorando nella cartella "Speed Loop":

Speed Loop									
Name	Value	Um	Default	Min	Max	Description			
EN_MEASURE	disable		disable						
F_START	10.0	Hz	10.0	1.0	1000.0	Minimum frequency detected			
F_END	200.0	Hz	200.0	1.0	1000.0	Maximum frequency detected			
PRC_SPD_REF_F	5.0	%MOT_SPD_MAX	5.0	1.0	100.0	Speed Reference signal amplitude			
PRC_T_MAX_ESTIMATED	0.0	%MOT_T_NOM	0.0			Maximum torque estimated during the test			
PRC_T_MAX	0.0	%MOT_T_NOM	0.0			Maximum torque during test			

Anche qui si può impostare il range di frequenze di interesse (F_START – F_END) e l'ampiezza del segnale di riferimento di velocità. Alla frequenza massima il regolatore di velocità dovrebbe erogare una coppia di ampiezza pari a "PRC_T_MAX_ESTIMATED", in realtà poi si dovrà tener conto dell'effettiva banda del regolatore per cui la coppia reale seguirà la banda stessa.

Nella grandezza interna "PRC_T_MAX" viene visualizzata la reale coppia massima erogata.

3.1. STEP DA SEGUIRE

In questo caso non ci sono indicazioni particolari da seguire. Impostare il regolatore di velocità con i suoi filtri e vedere poi il risultato.

Via dell'Oreficeria, 41 36100 Vicenza - Italy Tel +39 0444 343555 Fax +39 0444 343509 www.bdfdigital.com