

ㄷ⼸|厄
Toematno

## SUMMARY

1 INTRODUCTION ..... 2
1.1 INTENDED AUDIENCE ..... 2
1.2 UNIT MEASURING SYSTEM. .....  2
2 FLYING CUTTER PROFILES ..... 2
2.1 FLYING CUTTER PROFILES SUPPORTED ..... 2
2.2 OVERVIEW OF THE MAIN CYCLE ..... 3
2.3 FACTOR GROUP ..... 4
2.3.1 Extra View ..... 7
2.4 SPEED LINE MEASURE .....  8
2.5 HOMING MODE ..... 10
2.6 PROFILE POSITION MODE ..... 18
2.7 FLYING CUT MODE ..... 19
2.7.1 Overview of Flying Cutter Mode ..... 22
2.7.2 Waiting state ..... 22
2.7.3 Immediately cut ..... 22
2.7.4 Latch phase ..... 23
2.7.5 Synchronous phase ..... 23
2.7.6 Unlatch phase ..... 24
2.7.7 Positioning back ..... 25
2.7.8 Losing of phase ..... 26
2.7.9 Cut Mode ..... 27
2.7.10 Start from a value and dynamic start ..... 28
2.7.11 Torque Feed Forward ..... 30
2.7.12 Cut Status Word ..... 30
2.8 PROFILE VELOCITY MODE ..... 31
2.9 CAN OBJECTS ..... 33
2.10 ALARMS ..... 34
2.11 DIGITAL INPUT AND OUTPUT ..... 34
3 APPLICATION REVISION HISTORY ..... 36

## VERSION APPLICATION: 18.02

## 1 INTRODUCTION

### 1.1 INTENDED AUDIENCE

The manual is intended for those persons who are responsible for commissioning and using an OPDE with Flying Cutter Application. The reader should have some basic knowledge of networking, electrical fundamentals, electrical wiring practices and how to work the OPDE drive and OPD Explorer.

### 1.2 UNIT MEASURING SYSTEM

The units of measurement used by Flying Cutter are the following:

- Positions are expressed in "mm" (with one decimal point). Some visualization variables are expressed in i.e. (electrical pulses). One mechanical motor revolution is 65536 ie (or encoder pulses, default);
- Speed are expressed in "mm/s" (with one decimal point). Some visualization variables are expressed in ie/s.
- Accelerations are expressed in " $\mathrm{mm} / \mathrm{s}^{2 "}$. Some visualization variables are expressed in ie/s ${ }^{2}$.


## 2 FLYING CUTTER PROFILES

### 2.1 FLYING CUTTER PROFILES SUPPORTED

In OPDE drive are implemented the following CAN profiles:

- Device Control;
- Profile Velocity Mode;
- Profile Position Mode;
- Homing Mode;
- Flying Cut Mode;

The operative modes are automatically changed by an internal state machine when System is in Operation Enable state.

### 2.2 OVERVIEW OF THE MAIN CYCLE

Application has been developed with internal state machine of DS402. The jumping from the internal states are command directly by the application. Internal Variable D64 - STATUS_WORD shows the state of the drive.


Figure 1: DS402 operative mode

When system is in Operation Enabled, one operative mode can be enabled.
Following picture shows the sate machine associated to different state of Flying Cutter. At the beginning, system needs the Homing, so after enable $\mathbf{1 0 0}$ - Run Command user has to enable 107 Homing Start. When homing ends output O38-Homing Attained is enabled and system automatically jump to Profile Position to move to Zero Position. Homing Position could be different to Zero Position due to E28-29 - HMOFFSET which can be applied.
After moving to Zero Position, system jumps to Flying Cutter mode and can starts all the cutter procedure. If user enables the I11-Autotmatic I Manual input, system enables the "Manual mode" which is a Profile Velocity mode where a $\mathbf{1 0 3}$ - Jog Plus or $\mathbf{1 0 4}$ - Jog Minus can move the axis in speed mode.
After that user can repeat the Homing with input 107 - Homing Start or move to zero point with 106 Move to Zero Point. Then Flying Cutter mode can starts again.


Figure 2: Flying Cutter state
(1) Flying Cut Mode
(7) Profile Velocity Mode

### 2.3 FACTOR GROUP

Factor group represent the initial setting for the axe: E48-49-FEED_CONST is how many mm correspond to one turn of driving shaft revolution. E50-51-GEAR_BOX_NUM and E52-53GEAR_BOX_DEN is the gear ratio for gear box.

Example: if one driving shaft revolution correspond to 1000.0 mm and gear ratio is $12: 1$ is necessary to set:

- E48-49 - FEED_CONST = 1000.0,
- E50-51 - GEAR_BOX_NUM =12,
- E52-53 - GEAR_BOX_DEN = 1,

Parameter E94-pCYCLICPERIOD allows to set the synchronization for cyclic task (default 0.8-1.0 ms ).

User can choose the resolution of the sensor with parameter E98-pPOS_FRAC_SENS1 (first sensor resolution) or E99-pPOS_FRAC_SENS2 (second sensor resolution). The default value is 16 which means 1 mechanical turn $=65536\left(2^{16}\right)$ i.e.

If the value is different, the value of 1 mechanical turn is $2^{\text {pPOS_FRAC }}$ i.e.
Example: E98-pPOS_FRAC = 16,

| 16 |  |  | 15 |
| :--- | :--- | :---: | :---: |
| Bit [15...31] position on multi-turn | Bit [0...15] position on single turn |  |  |

One mechanical turn is $2^{16}=65536$ ie,

> E98-pPOS_FRAC = 19,

31
Bit [18...31] position on multi-turn
Bit [0...18] position on single turn

One mechanical turn is $2^{19}=524288$ ie,

| Name | Description | Min | Max | Default | UM | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RD_STATE_MACHINE | E101 - Finite State Automation |  |  |  |  |  |
| MODE_OF_OP_DIS | d65 - Modes of operation display |  |  |  |  |  |
| FEED_CONST | E48-49 - Feed Constant | 1.0 | $\begin{gathered} 200000000 \\ .0 \end{gathered}$ | 1000.0 | mm | 10 |
| GEAR_BOX_NUM | E50 - 51 - Motor Shaft Revolution |  |  | 0 | rev |  |
| GEAR_BOX_DEN | E52-53 - Driving Shaft Revolution |  |  | 0 | rev |  |
| QSDEC | E08-09 - Quick stop deceleration | 1.0 | $\begin{gathered} 200000000 \\ .0 \end{gathered}$ | 1000.0 | $\mathrm{mm} / \mathrm{s}^{2}$ | 1 |
| QSJERK | E10 - 11 - Quick stop Jerk | 0.0 | $\begin{aligned} & 200000000 \\ & .0 \end{aligned}$ | 0.0 | $\mathrm{mm} / \mathrm{s}^{2}$ | 1 |
|  |  |  | ange |  |  |  |
|  |  | 0 |  |  |  |  |
| pQSOPTC | E38 - Quick Stop Option | 2 | Switch On Disabled |  |  | 1 |
|  |  | 6 | tay in Quick Stop |  |  |  |
|  |  | 8 |  |  |  |  |
| pTHRVEL_FILTER_TF | E19- First order filter time constant on actual velocity | 0.1 | 200.0 | 100.0 | ms |  |
| pRESETRISEDGE | E44 - Reset on rising edge |  |  | No |  |  |
| ACTUALPOS_IE | d66-67 - Position actual value |  |  | 0 | ie |  |
| ACTUALVEL_IE | d68-69 - Velocity actual value |  |  |  | ie/s |  |
| ACTUALPOS | D78-79 - Position actual value |  |  |  | mm |  |
| ACTUALVEL | D80 - 81 - Velocity actual value |  |  |  | mm/s |  |
| pENSECONDSENS | E54 - Enable Second Sensor |  |  | No |  |  |
| LINE_SPD_MAX_LATC | D64 - Line speed Maximum during Latch/Unlatch |  |  | 0.0 | $\mathrm{m} / \mathrm{min}$ |  |
| pCYCLICPERIOD | E94-Cyclic Period Duration | 0.2 | 10.0 | 1.0 | ms |  |
| pPOS_FRAC_SENS1 | E98 - First sensor's fractional position | 16 | 25 | 16 | Bit | 1 |
| pPOS_FRAC_SENS2 | E99 - Second sensor's fractional position | 16 | 25 | 16 | Bit | 1 |
| MAX_SPEED_IE | $\begin{aligned} & \text { D74-75 - Maximum speed } \\ & \text { (P65) in i.e. } \end{aligned}$ |  |  | 0 | ie/s |  |
| MAX_SPEED_EU | D76-77-Maximum speed (P65) in mm/s |  |  | 0.0 | mm/s |  |
| MAX_ACC_EU | D82-83-Maximum accaeleration in $\mathrm{mm} / \mathrm{s}^{2}$ |  |  | 0.0 | $\mathrm{mm} / \mathrm{s}^{2}$ |  |

Tab. 1- Device Control Parameters and Objects


Figure 3: Factor Group interface

If first sensor is enabled, the position variables works in this way:
D66-67- ACTUALPOS_IE $=$ sysMechPosition - diZeroPos
Actual position is calculated un electrical pulses (where 1 turn $=2^{\wedge}$ pPOS_FRAC_SENS1(or 2)) is the difference between the position read directly form the sensor and the position diZeroPos, which is zero position found after Homing.

### 2.3.1 Extra View

| Name | Description | Min | Max | Default | UM | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| REV_HISTORY | E200 - Application Revision History |  |  |  |  |  |
| FG_ERR_WORDO | E102-Cut Status Word 0 |  |  |  |  |  |
| FG_ERR_WORD1 | E103-Cut Status Word 1 |  |  |  |  |  |
| CUT_STATUS_WORD | E112 - 113 - Cut Status Word |  |  |  |  |  |
| MIN_CTLGTH_MAXSPD | E118-119 - Minimum cut length at maximum speed |  |  |  | mm | 10 |
| STARTPOS_MAXSPD | E120-121- Max Start position at maximum speed |  |  |  | mm | 10 |
| STARTPOS_ACTSPD | E122-123 - Max Start position at actual line speed |  |  |  | mm | 10 |
| $\begin{aligned} & \text { MIN_CTLGTH_STARTP } \\ & \text { OSMAX } \end{aligned}$ | E124-125 - Minimum <br> Cut Length at start position for maximum line speed |  |  |  | mm | 10 |
| $\begin{aligned} & \text { MIN_CTLGTH_STARTP } \\ & \text { OSACT } \end{aligned}$ | E126-127 - Minimum Cut Length at start position for actual line speed |  |  |  | mm | 10 |
| DYN_START_POS | E128-129 - Dynamic Start position carriage applied |  |  |  | mm | 10 |
| MAX_POS_CARR_MIS_ <br> IE | E132-133 - Maximum carriage position measured in ie |  |  |  | ie | 1 |
| T_SYNCH_MEAS | E134-135 Synchronous time measured |  |  |  | ms | 1 |
| CUT_ERR_MAX | E136-137 - Cut Error Maximum |  |  |  | mm | 10 |
| CUT_ERR_MIN | E138-139-Cut Error <br> Minimum |  |  |  | mm | 10 |
| CUT_ERR_MAX_IE | E140-141 - Cut Error Minimum |  |  |  | ie | 1 |
| CUT_ERR_MIN_IE | E142-143-Cut Error <br> Minimum |  |  |  | ie | 1 |

Tab. 2- Extra View Folder

### 2.4 SPEED LINE MEASURE

Speed line measure folder contains the parameters for set the speed line. The main parameter is E6061 - LINE_PPM which is the number of pulses for one meter. Parameter E62 EN_TIME_DEC_LINE_SPD is used to Enable time decoding of line speed. With parameter E63EN_INV_SPD_LINE is possible to reverse the value of line speed.
Parameter E64 - LINE_SPD_MAX is used for some internal calculation inside Flying Cutter profile, while E66 - LINE_SPD_MIN is used for choosing the minimum line speed.
With the selection E67-LINE_SPD_SEL is possible to choose the source of line speed (this could be 0-Simulated, referred to parameter E68 - LINE_SPD_SIM, 1-Encoder, $2 . .4$ - analogue input 1..3). Internal variables D73 - LINE_SPD_MAX_TH is the theoretical maximum line speed calculated with the factor group data and the line Encoder pulses for meter.
Internal variable D72 - LINE_SPD is the Filtered speed line reading by drive.

| Name | Description | Min | Max | Default | UM | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LINE_PPM | E60-61- Pulses for meter | 99 | 200000 | 1024 | ie | 1 |
| LINE_PPM2 | E46-E47 - Pulses for meter 2 | 99 | 200000 | 1024 | ie | 1 |
| LINE_PPM_SCALING | E69 - Line ppm 1 and ppm 2 scaling |  |  | x1 |  |  |
| SET_LINE_PPM | E45-Set Line ppm |  |  | 0 |  |  |
| $\underset{\substack{\text { EN_TIME_DEC_LINE_S }}}{\substack{\text { PD } \\ \hline}}$ | E62 - Enable Time decoding of line speed | 0 | 1 | 0 |  | 1 |
| EN_INV_SPD_LINE | E63 - Line input signal inversion | 0 | 1 | 0 |  | 1 |
| LINE_SPD_TF | E64 - Line speed filtered time constat | 0.0 | 3000.0 | 10.0 | ms | 10 |
| LINE_SPD_MAX | E65 - Maximum Line Speed | 0.0 | 3000.0 | 100.0 | m/min | 10 |
| LINE_SPD_MIN | E66 - Minimum Line Speed | 0.0 | 3000.0 | 100.0 | m/min | 10 |
| LINE_SPD_SEL | E67- Input line selection | Range |  | 0 |  | 1 |
|  |  | 0 - Simulated |  |  |  |  |
|  |  | 1 | 1 - Encoder |  |  |  |
|  |  | 2 | 2 - AI1 |  |  |  |
|  |  | 3 | $3-\mathrm{Al} 2$ |  |  |  |
|  |  | 4 | 4-Al3 |  |  |  |
| LINE_SPD_SIM | E68 - Simulated line speed | 0.0 | 0.0 | 3000.0 | m/min | 1 |
| LINE_SPD_MAX_TH | D73 - Maximum <br> Theoretical line speed calculated |  |  |  | m/min | 1 |
| $\underset{\mathrm{H}}{\text { LINE_SPD_MAX_LATC }}$ | D64 - Line Speed Maximum during Latch/Unlatch |  |  |  | m/min |  |
| LINE_SPD | D72 - Filtered speed |  |  |  | $\mathrm{m} / \mathrm{min}$ |  |

Tab. 3- Line speed Parameters

Is important to see that there are two limit for the line speed, the first is D73-LINE_SPD_MAX_TH and refers to the maximum motor speed P65. The second is D64-LINE SPD_MAX LATCH and refers to the maximum acceleration the system can have in Latch/Unlatch function. If D64-LINE_SPD_MAX_LATCH < D73 LINE_SPD_MAX_TH, the first one becomes the limit.


Figure 4: Maximum Line Speed

If actual line speed D72 - LINE_SPD is equal to D64 -LINE_SPD_MAX_LATCH the system reaches acceleration limit during latch function.


Figure 5: Acceleration limit
(i) Facto
) Speed Line Measure
Homing Mode
號 Homing
2) Profile Position Mode
+1) Flying Cut Mode
(....) Profile Velocity Mode

### 2.5 HOMING MODE

Homing is used to found the zero point of the axis. There are up to 39 Homing Method for search the zero point (parameter E26-HMMODE). Some of these methods uses the zero index of sensor, other methods don't use it. Homing methods 1-35 refers to Standard CAN DS402. User can eventually set a position offset with parameter E28-29 - HMOFFSET. Parameters for speed are E30-31 - HMSPD, E32-33 - HMSPDEND, acceleration is E34-35 - HMACC, and Jerk is E92-93 - PROFJERK.


Tab. 4- Homing Mode parameters

## 1. Homing on Negative Limit Switch and Index pulse

The initial direction of movement shall be leftward (if the negative limit switch is inactive -low-). The home position shall be at the first index pulse to the right of the position where the negative l imit switch becomes inactive.


Figure 6 : Homing on Negative Limit Switch and Index pulse

## 2. Homing on Positive Limit Switch and index pulse

The initial direction of movement shall be rightward (if the positive limit switch is inactive -low-). The home position shall be at the first index pulse to the left of the position where the positive limit switch becomes inactive.


Figure 7: Homing on Positive Limit Switch and Index pulse

## 3. Homing on Home Switch and Index pulse

The initial direction of movement shall be dependent on the state of the home switch. Rightward if the home switch is inactive -low-. Leftward if the home switch is active -high-. The home position shall be at the first index pulse to the left of the position where the home switch becomes inactive.


Figure 8: Homing on Home Switch and Index pulse

## 4. Homing on Home Switch and Index pulse

The initial direction of movement shall be dependent on the state of the home switch. Rightward if the home switch is inactive -low-. Leftward if the home switch is active -high-. The home position shall be at the first index pulse to the right of the position where the home switch becomes active.

## 5. Homing on Home Switch and Index pulse

The initial direction of movement shall be dependent on the state of the home switch. Rightward if the home switch is active -high-. Leftward if the home switch is inactive -low-. The home position shall be at the first index pulse to the right of the position where the home switch becomes inactive


## 6. Homing on Home Switch and Index pulse

The initial direction of movement shall be dependent on the state of the home switch. Rightward if the home switch is active -high-. Leftward if the home switch is inactive -low. The home position shall be at the first index pulse to the left of the position where the home switch becomes inactive.

## 7. Homing on Home Switch and Index pulse - positive initial motion

The initial direction of movement shall be rightward except if the home switch is active at the start of the motion. The home position shall be at the index pulse on the left of the falling edge of the home switch. If during the movement the drive encounters the relevant limit switch, it shall reverse the direction of the movement.


Figure 10: Homing on Home Switch and Index pulse - positive initial motion

## 8. Homing on Home Switch and index pulse - positive initial motion

The initial direction of movement shall be rightward except if the home switch is active at the start of the motion. The home position shall be at the index pulse on the right of the rising edge of the home switch. If during the movement the drive encounters the relevant limit switch, it shall reverse the direction of the movement.

## 9. Homing on Home Switch and index pulse - positive initial motion

The initial direction of movement shall be rightward. The home position shall be at the index pulse on the left of the rising edge of the home switch. If during the movement the drive encounters the relevant limit switch, it shall reverse the direction of the movement.

## 10. Homing on Home Switch and index pulse - positive initial motion

The initial direction of movement shall be rightward except if the home switch is active at the start of the motion. The home position shall be at the index pulse on the right of the falling edge of the home switch. If during the movement the drive encounters the relevant limit switch, it shall reverse the direction of the movement.

## 11. Homing on Home Switch and index pulse - negative initial motion

The initial direction of movement shall be leftward except if the home switch is active at the start of the motion. The home position shall be at the index pulse on the right of the falling edge of the home switch. If during the movement the drive encounters the relevant limit switch, it shall reverse the direction of the movement.

## 12. Homing on Home Switch and index pulse - negative initial motion

The initial direction of movement shall be leftward except if the home switch is active at the start of the motion. The home position shall be at the index pulse on the left of the falling edge of the home switch. If during the movement the drive encounters the relevant limit switch, it shall reverse the direction of the movement.


Figure 11: Homing on Home Switch and Index pulse - negative initial motion

## 13. Homing on Home Switch and index pulse - negative initial motion

The initial direction of movement shall be leftward except if the home switch is active at the start of the motion. The home position shall be at the index pulse on the right of the rising edge of the home switch. If during the movement the drive encounters the relevant limit switch, it shall reverse the direction of the movement.

## 14. Homing on Home Switch and index pulse - negative initial motion

The initial direction of movement shall be leftward except if the home switch is active at the start of the motion. The home position shall be at the index pulse on the left of the falling edge of the home switch. If during the movement the drive encounters the relevant limit switch , it shall reverse the direction of the movement.

## 17.Homing without index pulse

See method 1-14 except that the home position is not dependent on the index pulse but only on the relevant home or limit switch transition

## 18. Homing without index pulse

See method 1-14 except that the home position is not dependent on the index pulse but only on the relevant home or limit switch transition.

## 19. Homing without index pulse

See method 1-14 except that the home position is not dependent on the index pulse but only on the relevant home or limit switch transition.


Figure 12: Homing without index pulse

## 21. Homing without index pulse

See method 1-14 except that the home position is not dependent on the index pulse but only on the relevant home or limit switch transition.

## 23. Homing without index pulse

See method 1-14 except that the home position is not dependent on the index pulse but only on the relevant home or limit switch transition.

## 26. Homing without index pulse

See method 1-14 except that the home position is not dependent on the index pulse but only on the relevant home or limit switch transition.

## 27. Homing without index pulse

See method 1-14 except that the home position is not dependent on the index pulse but only on the relevant home or limit switch transition.

## 30. Homing without index pulse

See method 1-14 except that the home position is not dependent on the index pulse but only on the relevant home or limit switch transition.

## 33. Homing on index pulse

The direction of the homing is negative. The home position shall be at the first index pulse found in the negative direction.


Figure 13: Homing on index pulse

## 34. Homing on index pulse

The direction of the homing is positive. The home position shall be at the first index pulse found in the positive direction.

## 35.Homing on index pulse

The current position shall be taken to be the home position. (Operational enabled state not required).

## 36.Homing on mechanical beat and index pulses

The initial direction of movement shall be rightward. The home position shall be at the first index pulse to the left of the position where the mechanical beat is found. User can limit the torque during homing with parameter E75-pHMMAXTRQ.

## 37.Homing on mechanical beat and index pulses

The initial direction of movement shall be leftward. The home position shall be at the first index pulse to the rigth of the position where the mechanical beat is found. User can limit the torque during homing with parameter E75-pHMMAXTRQ.

## 38.Homing on mechanical beat without index pulses

The initial direction of movement shall be rightward. The home position shall be at the left of the position where the mechanical beat is found. User can limit the torque during homing with parameter E75pHMMAXTRQ.

## 39.Homing on mechanical beat without index pulses

The initial direction of movement shall be leftward. The home position shall be at the rigth of the position where the mechanical beat is found. User can limit the torque during homing with parameter E75 pHMMAXTRQ.

When E28-29 - HMOFFSET is applied, the zero position is overwrite with this value and axis position will be referred to this value.


Figure 14: Offset Position


Figure 15: Homing Interface

## Application

FlyingCutter_02
(7) Factor Group
2) Speed Line Measure

Homing Mode
Profile Position Mode
(7) Flying Cut Mode
(i) Profile Velocity Mode

### 2.6 PROFILE POSITION MODE

Profile position mode is set when drive have to move the motor to zero position or after Homing or after manual mode if input 106 - ID_MOVE_ZERO is enabled. User can chose Acceleration E04-05 PROFACC, Deceleration E06-07 - PROFDEC, Speed E12-13 - VELPOS, Jerk E92 - 93 PROFJERK.

| Name | Description | Min | Max | Default | UM | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RD_STATE_MACHINE | E101 - Finite State Automation |  |  |  |  | 1 |
| MODE_OF_OP_DIS | D65 - Modes of operation display | 0 | 1 |  |  | 1 |
| PROFACC | E04-05 - Profile Acceleration | 1.0 | 200000000.0 | 1000.0 | $\mathrm{mm} / \mathrm{s}^{2}$ | 10 |
| PROFDEC | E06-07 - Profile Deceleration | 1.0 | 200000000.0 | 1000.0 | $\mathrm{mm} / \mathrm{s}^{2}$ | 10 |
| VELPOS | E12-13-Profile Velocity | 1.0 | 200000000.0 | 1000.0 | mm/s | 10 |
| PROFJERK | E92-93-Profile Jerk | 1.0 | 200000000.0 | 1000.0 | $\mathrm{mm} / \mathrm{s}^{3}$ | 1 |
| QSDEC | E08-09 - Quick stop deceleration | 1.0 | 200000000.0 | 1000.0 | $\mathrm{mm} / \mathrm{s}^{2}$ | 10 |
| QSJERK | E10-E11 - Quick Stop Jerk | 0.0 | 200000000.0 | 0.0 | $\mathrm{mm} / \mathrm{s}^{2}$ |  |
|  |  |  | Range |  |  |  |
|  |  | 0 | 0 - Simulated |  |  |  |
| pQSOPTC | E38 - Quick Stop Option | 2 | 2 - Switch On Disabled | 2 |  | 1 |
|  |  | 6 | 6 - Stay in Quick Stop |  |  |  |
|  |  | 8 |  |  |  |  |
| WINPOS | E14-15-Position Window | 1.0 | 200000000.0 | 100.0 | mm | 10 |
| FOLLERR | E16-17 - Following Error window | 0.0 | 200000000.0 | 10000.0 | mm | 10 |
| ERRORPOS | D70 - 71 - Following error window |  |  |  | ie | 1 |
| pENSPDFDW | E36 - Enable Speed Feed-forward | 0 | 1 |  |  | 1 |
| pENTRQFDW | E37 - Enable Torque Feed-forward | 0 | 1 |  |  | 1 |
| pPOS_REG_KP | E39 - Kv position loop proportional gain | 0.0 | 400.0 | 4.0 |  | 10 |
| ACTUALPOS_IE | D66-67 - Position actual value in ie |  |  |  | ie |  |
| ACTUALVEL_IE | D68 - 69 - Velocity actual value |  |  |  | ie/s |  |
| LINE_SPD_MAX_LATC | D64-Line speed maximum during Latch/Unlatch |  |  |  | m/min |  |
| SWLIMITMIN | E40-41 - Minimum Position Limit | $\begin{gathered} 200 \\ 000 \\ 000 . \\ 0 \end{gathered}$ | 200000000.0 | -2000.0 | mm | 10 |
| SWLIMITMAX | $\begin{aligned} & \text { E42-43 - Maximum } \\ & \text { Position Limit } \end{aligned}$ | $\begin{gathered} 200 \\ 000 \\ 000 . \\ 0 \end{gathered}$ | 200000000.0 | 2000.0 | mm | 10 |
| MAX_SPEED_IE | D74-75 - Maximum speed (P65) in i.e. |  |  |  | ie/s |  |

Tab. 5- Profile Position Mode

- Fly Fly Cutter_02
(7) Factor Group
(1) Speed Line Measure

After Homing and positioning to zero-point, drive jumps in Flying Cut mode. Following table shows all the parameters for this Operative Mode.

| Name | Description | Min |  | Max | Def ault | UM | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RD_STATE_MACHINE | E101 - Finite State Automation |  |  |  |  |  | 1 |
| MODE_OF_OP_DIS | D65 - Modes of operation display |  |  | 1 |  |  | 1 |
| CUT_STATE | D94 - Flying Cut State |  |  |  |  |  | 1 |
| EN_CUT_DEMO | E00 - Enable Demo Cut |  |  |  | 0 |  |  |
| CUT_DEMO_TIME | E01-Cut Demo Time |  |  | 65000 | 0 |  |  |
| POS_LATCH | E80-81 - Latch Position Carriage side |  |  | 200000000.0 | 50.0 | mm | 10 |
| CUT_TRQMAX | E82 - Cutter Maximum Torque |  |  | 400.00 | $\begin{gathered} 100 . \\ 00 \end{gathered}$ |  | 40.96 |
| TARR_LATCH | E83 - Rounded Time |  |  | 100.00 | $\begin{gathered} 40.0 \\ 0 \end{gathered}$ | \% | 100 |
| POS_UNLATCH | E84-85 - Unlatch position carriage side |  |  | 200000000.0 | 50.0 | mm | 10 |
| TARR_UNLATCH | E87 - Rounded Time Unlatch |  |  | 100.00 | $\begin{gathered} 40.0 \\ 0 \end{gathered}$ | \% | 100 |
| MAX_POS_CARRIAGE | E88-89 - Maximum Carriage Position |  |  | 200000000.0 | 50.0 | mm | 10 |
| CUT_LENGTH | E90-91 - Cut Length |  |  | 200000000.0 | 50.0 | mm | 10 |
| POS_BACK_SEL | E70 - Positioning Backselection |  |  | ange | 0 |  | 1 |
|  |  | 0 |  | - Trap. And st speed with override |  |  |  |
|  |  | 1 |  | - Trap. And ed E65 with override |  |  |  |
|  |  | 2 |  | - Trap. And st speed D73 th override |  |  |  |
|  |  | 3 |  | - Trap. And onst speed |  |  |  |
|  |  | 4 |  | - Trap. And speed E65 |  |  |  |
|  |  | 5 |  | - Trap. And peed D73 |  |  |  |
|  |  | 6 |  | S. Ramps and onst speed |  |  |  |
|  |  | 7 |  | S. Ramps and peed E65 |  |  |  |
|  |  | 8 |  | . Ramps and peed D73 |  |  |  |
|  |  | 9 |  | Pos Back in requency |  |  |  |
| POS_BACK_CST_SPD | E71 - Positioning Back Const Speed |  |  | 100.00 | 0.0 | \% | 100 |
| TARR_POSBCK_FRQ | E56 - Rounded time for positioning back in frequency | 0.00 |  | 100.00 | $\begin{gathered} 100 . \\ 00 \end{gathered}$ | \% |  |
| CUTTER_MODE | E72-Cutter Mode | Range |  |  |  |  | 1 |
|  |  | 0 |  | Simulation Cut |  |  |  |
|  |  | 1 |  | Ramp Down After Cut |  |  |  |

[^0].... Homing Mode
(1) - Profile Velocity Mode

### 2.7 FLYING CUT MODE



| Name | Description | Min | Max | Def <br> ault | UM | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAST_CUT_LGTH | D88-89 - Last Cut Length |  |  |  | mm | 10 |
| CUT_LGT_EST_ACT | D86-87 - Cut length Est <br> with actual line speed |  |  |  | mm | 10 |
| CUT_ERR_MAX | E136 - 137 - Cut Error <br> Maximum |  |  | mm | 10 |  |
| CUTT_ERR_MIN | E138 - 139 - Cut Error <br> Minimum |  |  | mm | 10 |  |

Tab. 6- Flying Cutter Mode


Figure 16: Flying Cut Interface

First of all is necessary to set the software limits for the carriage, they are E40-41 - SWLIMITMIN E42-43-
SWLIMITMAX. Parameter E90-91-CUT_LENGTH is the cut length setting. Parameter E88-89 -
MAX_POS_CARRIAGE is the maximum position reaches by the carriage when system is control to reach the maximum position after cut (E72 - CUTTER_MODE = $\mathbf{2}$ - Reach The Max Pos After Cut).

### 2.7.1 Overview of Flying Cutter Mode

The Flying cutter mode is divided in 5 Phases. User can check actual phases with parameter D94 CUT_STATE. The mains state are 0-Waiting, 1-Latch, 2-Synchronous, 3-Unlatch, 4-Positioning Back. In the following picture blue signal is speed reference, red signal is actual speed, green signal is following error actual value, violet signal is frequency input counter.


Figure 17: Flying Cut state

### 2.7.2 Waiting state

After Homing Position and after reaching zero-point, system is ready to starts the Flying Cutter mode. When 105 -ID_CUT_EN is enabled, drive starts to count the pulses coming from the line. In this phases drive is waiting to match the threshold value in order to reaches line speed.

### 2.7.3 Immediately cut

If 101 - ID_IMMCUT is enabled, user can force the immediately starting of a cut. With this condition the Unlatch phase after cut is enabled immediately. The frequency counter is overwritten with the counter calculate for reaches the next cut with the correct value.



Figure 18: Immediately Cut

### 2.7.4 LATCH PHASE

Parameter E80-81 - POS_LATCH is the space covered by carriage during latch phase. When system reaches the threshold value (E90-91 - CUT_LENGTH - (2*E80-81 - POS_LATCH)), drive starts to move the motor in order to reaches the line speed (D72-LINE_SPD).

User can set the percent value of rounded with parameter E83-TARR_LATCH.
The following example has been realized with parameter E83 $=50 \%$, that means that $50 \%$ of time of latch time is use for acceleration ( $25 \%$ for increasing acceleration, $25 \%$ decreases deceleration, $50 \%$ constant acceleration).

At the end of Latch Function O32-OD_SYNCH_OUT is enabled. During Latch Phase Outputs O34-3536 and bits $4-5-6$ of Status Word shows the state 001 ( $1_{\text {dec }}$ means Latch Phase). User can also check it on variable D94 - Flying Cut State.


Figure 19: Latch Phase

### 2.7.5 SYNCHRONOUS PHASE

After Latch phase the carriage runs at the same speed of Line Speed. Drive enables O32OD_SYNCH_OUT and waits for input I10 - Cut Ok. This input has to be enabled and disabled in order to confirm that cut without problem. Then, there are three kind of management of deceleration after cut (parameter E72 - CUTTER_MODE):

- $\mathbf{0}$ - Simulation cut. Drive keeps the carriage to the same speed of line until is reached a time E74 - T_SYNCH,
- 1-Ramp Down After Cut. Drive starts immediately to ramp down the carriage to zero speed,
- 2 - Reach Maximum position after Cut. Drive keeps the carriage to the same speed of line and starts to ramp down in order to reaches E88-89 - MAX_POS_CARRIAGE.
In the section of Cutter Mode there will be more information.


| Track | Um | Min value | Max value | Cur value | v/div | Red cursor | Blue cursor | Ho... | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OpenDrive B..1: 003 | \%MOT_SPD... | 0.000 | 12.421 | 12.409 | 1.492... |  |  |  | 003 Reference spe... |
| OpenDrive B..1: 004 | \% MOT_SPD... | -0.134 | 12.684 | 12.257 | 1.492... |  |  |  | o04 Rotation spee... |
| OpenDrive B..1: 074 | \% LINE_SPD... | 12.403 | 12.428 | 12.415 | 1.492... |  |  |  | o74 Filtered speed ... |

Figure 20: Starts of Synchronous phase

During Latch Phase Outputs 034-35-36 and bits 4-5-6 of Status Word shows the state 010 (2dec means Synch Phase).

If the input I10 - Cut Ok doesn't come until the system reaches the MAX_POS_CARRIAGE POS_UNLATCH Drives ramps down speed to zero and enables a bit of status word.

### 2.7.6 UNLATCH PHASE

After reaches the position threshold depending by parameter E72-CUTTER_MODE, and if the input I10 - Cut Ok has been detected drive starts to ramp down the motor to zero speed. Parameter E80 81 - POS_UNLATCH is the space covered by carriage during Unlatch Phase. Parameter E87TARR_UNLATCH is the percentual of rounding of acceleration. At the end of this phase, carriage reaches its maximum position measured D92-93 - MAX_POS_CARR_MIS. If E72 - CUTTER_MODE $=2$ the variables will be closed to parameters E88-89-MAX_POS_CARRIAGE.

The following example has been realized with parameter E87 $=50 \%$, that means that $100 \%$ of time of latch time is use for acceleration ( $50 \%$ for increasing acceleration, $50 \%$ decreases deceleration, $0 \%$ constant acceleration).


During Unlatch Phase Outputs 034-35-36 and bits 4-5-6 of Status Word shows the state 011 (3dec means Unlatch Phase).

### 2.7.7 Positioning back

When Unlatch phase ends the Carriage Profile doesn't depends any more from the Line Speed, until the next Phase. Obviously, the drive continues to count the pulses coming from line speed, the goal for the Carriage is to come back to zero position after the next Latch Phase starts. The positioning Back Profile is realised by a time-generator profile.

There are 9 different kind of Positioning Back:

- 0 - Trapezoidal and constant speed with override. Trapezoidal speed applied with speed depending on the time requested to come to zero position. An override is applied.
- 1 - Trapezoidal and constant speed E65 with override. Trapezoidal speed applied, speed can be set by parameter E65-LINE_SPD_MAX. An override is applied
- 2 - Trapezoidal speed and D73 with override. Trapezoidal speed applied, speed is set like maximum 73 - LINE_SPD. An override is applied.
- 3- Trapezoidal and constant speed without override. Like 0 but no override is applied.
- 4 - Trapezoidal and constant speed E65. Like 1 but no override is applied.
- 5 - Trapezoidal speed and D73. Like 2 but no override is applied.
- 6 - S-Ramps and constant speed. S-Ramps profile generator is applied. The profile data are estimated
- 7- S-Ramps and speed E65. S-Ramps profile generator is applied. The speed applied is equal to E65.
- 8 - S-Ramps and speed D73. S-Ramps profile generator is applied. The speed applied is equal to the maximum (D73).
- $\quad 9$ - Positiong Back in frequency.


Figure 22: Positioning Back Phase

During Positioning Back Phase Outputs 034-35-36 and bits 4-5-6 of Status Word shows the state 100 ( $4_{\text {dec }}$ means Pos Back Phase).

From the application version FlyingCutter_02 is possible to enable the Positiong Back in frequency (E70 - POS_BACK_SEL = 9 - Pos Back in frequency), this allows to modulates the positioning back depending by the frequency, in order to minimize the waiting time.
For this option the parameters E71 - POS_BCK_CST_SPD and E56 - TARR_POSBCK_FRQ are used.

The following picture shows a cycle with E70 - POS_BACK_SEL = 9-Pos Back in frequency. Is possible to see that changing the line speed (green signal), also the positioning back profile is modulated.


Figure 23: Positioning Back modulation by Line Speed

### 2.7.8 LOSING OF PHASE

Obviously, all the calculation are realised from theoretical point of view. In the real machine will be necessary consider the real speed so the speed regulators will be very important. If for some reason the system can not reached the zero position until a new Latch Phase is request, the application enables "O37-Phase Error" output.
When cycle is ok and there isn't any Phase Error the Frequency Counter (violet signal, o76-077) is updated at the start of Synchronous Phase (end of Latch Function), like to following picture.


Figure 24: Frequency counter detection for correct cycle

### 2.7.9 Cut Mode

With parameter E72 - CUTTER_MODE is possible to choose up to 3 cutting mode. The first ( 0 Simulation cut), is used only for simulation, in this case a time of synchronous zone is applied (E74 T_SYNCH).
In the second system ramp down immediately after cut.
Third is used to reach the maximum position E88-89 - MAX_POS_CARRIAGE,



Figure 25: Ramp down after cut mode


Figure 26: Reaching maximum position cut mode

The parameter E59 - CUT_INPUT_DET allows to choose so detect rising and falling edge (E59 = 0) of I10 - Cut Ok or only rising (E59 = 1). If the setting is "rising and falling" and the system doesn't catch both condition until reaching the threshold position value for start unlatch (with threshold E76-POS_THR_UN) an emergency ramp is applied (with deceleration E08-09 - QSDEC and jerk E10-11 - QSJERK). The Cut Status Word E112-113 bit 13 (position unlatch reached) will shows the condition.


Figure 27: Ramp down after

### 2.7.10 START FROM A VALUE AND DYNAMIC START

With the parameter E95-START_MODE is possible to choose the start points of the system. This can be zero position found after homing (E95 = 0), or a different value (E95 = 1, start from parameter E96-97-START_POS_CARRIAGE).

From the application version 18.02 is possible to choose the "Dynamic Start function" (E95 = 2 Dynamic Start). With this function, is possible to decrease the cut length less than the minimum and move the start point in order to achieve maximum acceleration and maximum speed of the system.

Example:

```
E48-49 - FEED_CONST = 50 mm
E50-51 - GEAR_BOX_NUM = E52-53 - GEAR_BOX_DEN =1,
E80-81 = POS_LATCH = E84-85 = POS_UNLATCH = 100 mm,
E83 - TARR_LATCH = E87 - TARR_UNLATCH = 100%,
E88-89 = MAX_POS_CARRIAGE = 400 mm,
E72 - CUTTER_MODE =2 - Reach Maximum Position After Cut,
E95- START_MODE = 2 - Dynamic Start,
E73 = POS_THR = 10 mm
P169 - START_TIME = 245 ms.
D72- LINE_SPD = 50 mt/min
```

With this configuration, the maximum line speed due to maximum acceleration during the latch/unlatch phase is 69,9 mt/min (D64 - LINE_SPD_MAX_LATCH).

OPDExplorer automatically calculates some usefully variables for Dynamic start:

| CUT_LGT_EST_ACT | 971.4 | mm | D86-87-Cut Length Est with actual line speed |
| :--- | :--- | :--- | :--- |
| MIN_CTLGTH_MAXSPD | 1115.9 | mm | E118-119-Minimum Cut Length at maximum line speed |
| STARTPOS_MAXSPD | 83.4 | mm | E120-121-Max Start position at maximum line speed |
| STARTPOS_ACTPD | 116.7 | mm | E122-123-Max Start position at actual line speed |
| MIN_CTLGTH_STARTPOSMAX | 976.7 | mm | E124-125-Minimum Cut Length at start position for maximum line speed |
| MIN_CTLGTH_STARTPOSACT | 797.5 | mm | E126-127-Maximum Cut Length at start position for actual line speed |

D86-87 - CUT_LGTH_EST_ACT is the cut length estimation at actual speed line, from E96-97 START_POS_CARRIAGE to E88-89 - MAX_POS_CARRIAGE.
E118-119 - MIN_CTLGTH_MAX_SPD is like above but at maximum line speed D64 -
LINE_SPD_MAX_LATCH.
E120-121 - STARTPOS_MAX_SPD is the maximum start position estimated (when Dynamic Start is enabled) for maximum line speed, this depends on parameter E74-T_SYNCH.
E122-123 - STARTPOS_ACT_SPD is like above but at actual speed.

E124-125 - MIN_CTLGTH_STARTPOSMAX is the minimum Cut Length, for Dynamic Start at maximum line speed. The application will move the start point to E120-121 -
STARTPOS_MAX_SPD.
E126-127 - MIN_CTLGTH_STARTPOSACT is the minimum Cut Length, for Dynamic Start at actual line speed. The application will move the start point to E122-123 - STARTPOS_ACT_SPD.

Changing the cut length from 975 mm to 800 mm the start position will change from 0 to 117 mm .
The first cycle, after changing the cut length, is processed with Old Length but the new Dynamic Start Position.
After this, the New Cut Length is fully applied.

| Old Cut Length $=975 \mathrm{~mm}$ | First cycle after changing, old cut <br> length $=975 \mathrm{~mm}$ new start position | New Cut Length $=800$ <br> mm | New Cut Length $=800$ <br> mm | New Cut Length $=800$ <br> mm |
| :--- | :--- | :--- | :--- | :--- |



Figure 28: Dynamic Start, changing of cut length

Is possible to see, with for this example both cut length are near the limit of the system (acceleration is equal to $100 \%$ for old and new Cut Length). The first cycle after E90-91-CUT_LENGTH changing detetcion, is keep with the previous value but is changed the start position to E122-123 -
STARTPOS_ACT_SPD. From the second cycle also the cut length will be changed. In this condition the system will enables the bit 18 Low Cut Enabled.

This function has been developed only for E70 - POS_BACK_SEL = 9 - Pos Back in Frequency and E72-CUTTER MODE = 2 - Reach Max Pos After Cut.

### 2.7.11 TORQUE FEED FORWARD

In this application is very important to minimize the position error (o73) in order to have a better profile. Is very important to realyse start up time (U01 = 1-Start Up) in order to estimate the start time P169 of motor and load. After that is necessary to tune well the speed loop gains.

Is possible also to enable torque Feed Forward (E37-pENTRQFDW), this will compensate the torque inertial component request.



Figure 29: Torque FFW applied

### 2.7.12 Cut Status Word

E112-113 - CUT_STATUS_WORD contains some information about cut state. If one of condition appears: Factor Group error, Following Error or Fieldbus Error appears the drive will enables bit 14 pre-fault state. If the speed is zero relative alarms also appears.

| 15 <br> Hm C | 14 <br> Pf | 13 <br> Cdm | 12 <br> sy | 11 <br> pur | 10 <br> Op2 | 9 <br> Op1 | 8 <br> Op0 | 7 <br> Hm <br> tr | 6 <br> Ph <br> 2 | 5 <br> Ph <br> 1 | 4 <br> Ph 0 | 3 <br> ce | 2 <br> man | 1 <br> f | 0 <br> oe |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 <br> LowCut | 17 <br> Lger | 16 <br> Cut <br> Ok |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fig. 30-Status Word (16 LSB)

| 0 | Operation Enable State (Ds402) |
| :---: | :---: |
| 1 | Fault State (Ds402) |
| 2 | Automatic/Manual |
| 3 | Cycle enabled |
| 4 | Cycle Phase 0 |
| 5 | Cycle Phase 1 |
| 6 | Cycle Phase 2 |
| 7 | Homing Target Reached |
| 8 | Operation mode bit 0 |
| 9 | Operation mode bit 1 |
| 10 | Operation mode bit 2 |
| 11 | Position Unlatch Reached |
| 12 | Synchronous flag |
| 13 | Cut Demo |
| 14 | Pre Fault State |
| 15 | Homing attained |
| 16 | Cut Ok |
| 17 | Length Error |
| 18 | Low Cut Enabled |

Tab. 7- Meaning of status word (16 LSB)

### 2.8 PROFILE VELOCITY MODE

When the system goes in manual mode (enabling I11-Autotmatic I Manual), drive is automatically set to 3-Profile Velocity Mode. In this condition user can move the carriage with IO3-Jog Plus or 104 - Jog Minus. User can act on the speed E02-03 - TARGETVEL ( $\mathrm{mm} / \mathrm{s}$ ), acceleration E22-23 VELACC ( $\mathrm{mm} / \mathrm{s}^{2}$ ), deceleration E24-25 - VELDEC $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$, Jerk E92-93-PROFJERK ( $\mathrm{mm} / \mathrm{s}^{3}$ ).

| Name | Description |  |  | Max | Def ault | UM | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RD_STATE_MACHINE | E101 - Finite State Automation |  |  |  |  |  | 1 |
| MODE_OF_OP_DIS | D65 - Modes of operation display |  |  | 1 |  |  | 1 |
| TARGETVEL | E02-03 - Target Velocity |  |  |  | 0 | mm/s | 1 |
| VELACC | E22-23 - Velocity <br> Acceleration |  |  | 200000000.0 | $\begin{gathered} 100 \\ 0.0 \end{gathered}$ | $\mathrm{mm} / \mathrm{s}^{2}$ | 10 |
| VELDEC | E24-25-Velocity Deceleration |  |  | 200000000.0 | $\begin{gathered} 100 \\ 0.0 \end{gathered}$ | $\mathrm{mm} / \mathrm{s}^{2}$ | 10 |
| QSDEC | E08-09 - Quick stop deceleration |  |  | 200000000.0 | $\begin{aligned} & 100 \\ & 0.0 \end{aligned}$ | $\mathrm{mm} / \mathrm{s}^{2}$ | 1 |
| QSJERK | E10-11 - Quick Stop Jerk |  |  | 200000000.0 | 0.0 | $\mathrm{mm} / \mathrm{s}^{2}$ | 1 |
| PROFJERK | E92-93-Profile Jerk |  |  | 200000000.0 | 0.0 | $\mathrm{mm} / \mathrm{s}^{3}$ | 1 |
| pQSOPTC | E38 - Quick Stop Option code | Range |  |  | 2 |  | 1 |
|  |  | 0 |  | Simulated |  |  |  |
|  |  | 2 |  | Switch On Disabled |  |  |  |
|  |  | 6 |  | Stay in Quick Stop |  |  |  |
|  |  | 8 |  |  |  |  |  |


| Name | Description | Min | Max | Def ault | UM | Scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pTHRVEL | E18 - Velocty Threshold | 100 | 65535 | $\begin{gathered} 100 \\ 00 \end{gathered}$ | le/s | 1 |
| pTIMEVEL | E20 - Velocity Threshold time | 0 | 65535 | 0 | ms |  |
| ACTUALPOS_IE | D66-67 - Position actual value in ie |  |  |  | ie |  |
| ACTUALVEL_IE | D68-69-Velocity actual value in ie/s |  |  |  | ie/s |  |
| pENSPDFDW | E36 - Enable Speed Feed-forward | 0 | 1 |  |  |  |
| SWLIMITMIN | E40-41 - Minimum Position Limit | 20000 0000.0 | 200000000.0 | $\begin{gathered} \hline- \\ 200 \\ 0.0 \\ \hline \end{gathered}$ | mm | 10 |
| SWLIMITMAX | E42-43 - Maximum Position Limit | 20000 <br> 0000.0 | 200000000.0 | $\begin{aligned} & 200 \\ & 0.0 \end{aligned}$ | mm | 10 |
| LINE_SPD_MAX_LATC $_{\mathbf{H}}$ | D64 - Line speed maximum during Latch/Unlatch |  |  | 0.0 | $\mathrm{m} / \mathrm{min}$ |  |
| MAX_SPEED_IE | D74-75 - Maximum speed (P65) in i.e. |  |  |  | ie/s |  |

Tab. 8- Meaning of status word (16 LSB)


Figure 31: Manual mode

### 2.9 CAN OBJECTS

| Index <br> (hex) | Object | Type | Name | Description | PDO <br> Mapping | Access |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3000 | VAR | UNSIGN <br> ED32 | FEED_CONST | Feed Factor Group | Yes | reading |
| 3001 | VAR | UNSIGN <br> ED32 | GEAR_BOX_NUM | Fexplorer Parameter: E48-49 |  |  |

### 2.10 ALARMS

| Alarms |  | Description | Correction |
| :---: | :---: | :---: | :---: | :---: | (

Tab. 9- Alarms table

### 2.11 DIGITAL INPUT AND OUTPUT

| Digitals Inputs |  |
| :---: | :---: |
| Name | Descriptions |
| 100 | ID_RUN - Run command |
| 102 | ID_IMMCUT - External enable |
| 103 | ID_JOGP - Jog Plus |
| 104 | ID_JOGM - Jog Minus |
| 105 | ID_CUT_EN - Cut enable |
| 106 | ID_MOVE_ZERO - Move to |
| Zero point |  |


| 112 | ID_CUTMODEO - Cut Mode Input 0 |
| :---: | :---: |
| 113 | ID_CUTMODE1 - Cut Mode Input 1 |
| 114 |  |
| 115 |  |
| 116 |  |
| 117 | ID_POSBACKO - Mode Position Back 0 |
| 118 | ID_POSBACK1 - Mode Position Back 1 |
| 119 | ID_POSBACK2 - Mode Position Back 2 |
| 120 | $\begin{aligned} & \text { ID_POSBACK3 - Mode } \\ & \text { Position Back } 3 \end{aligned}$ |
| 121 |  |
| 122 |  |
| 123 | ID_TC_SWT_MOT - Motor |
| 124 |  |
| 125 |  |
| 126 | ID_EN_SB - Enable speed regulator second bank |
| 127 |  |
| 128 | ID_POS_LMN_SWT - Positive |
| 129 | ID_NEG_LMN_SWT Negative Limit Switch |
| 130 | ID_HOME_SWT - Home switch |
| 131 |  |

Tab. 10- Digital Input

| Digitals Inputs |  |
| :---: | :---: |
| Name | Descriptions |
| O32 | Target Reached |
| O33 | Set Point Acknowledge |
| O34 | Following Error |
| O35 | Homing Attained |
| O36 | Op Mode Reply Bit0 |
| O37 | Op Mode Reply Bit1 |
| O38 | Op Mode Reply Bit2 |
| O39 | Operation Enabled |

Tab. 11- Application Digital Output

| OSC Variables |  |
| :---: | :---: |
| Name | Descriptions |
| o69 - Position reference <br> received (LSW) |  |
| o70 - Position reference <br> received (MSW) |  |
| o71 - Actual Position (LSW) |  |
| o72 - Actual Position (MSW) |  |
| o73 - Actual position error |  |
| o74 - Actual Set point PI |  |
| o75 -Feedback PI |  |
| o76 - Start holding cam profile <br> flag |  |
| o77 - Actual PI Error |  |
| o78 - Actual PI Output |  |
| o79 - Actual Derivate Speed |  |
| FFW |  |

Tab. 12- Osc variables

## 3 APPLICATION REVISION HISTORY

Rev. 18.02.12 (31/05/2019), Minimum core target: Opendrive Brushless 22.3/ Async 12.3
Issues fixed
$\square$
New Functionality

```
v18.02.12
Positioning back in frequency Dynamic Start
```

Via dell'Oreficeria, 41
36100 Vicenza - Italy
Tel +39 0444343555
Fax +39 0444343509
www.bdfdigital.com


[^0]:    ...) Profile Position Mode
    Flying Cut Mode
    ${ }_{8}^{8 \cdot 0}$ Flying Cut
    (i) Cut Variables

