SUMMARY

1. MULTI-POSITIONER 1-1
1.1. PARAMETERS FOR THE MOVEMENTS 1-1
1.2. SEQUENCE 1-1
1.3. INDIVIDUAL SELECTION THROUGH LOGIC INPUTS 1-2
1.4. INDIVIDUAL SELECTION THROUGH SOFTWARE SWITCH 1-2
1.5. DISPLAYS AND LOGIC OUTPUTS 1-3
1.6. SERIAL LINE SETTINGS: TDEMACNO PROTOCOL 1-4

1. MULTI-POSITIONER

The converter can execute up to 12 point-to-point completely programmable movements.
These movements can be selected in sequence or individually.
To enable the multipositioner: $\mathbf{c 7 0}=1$. The standard positioner must be already enabled ($c 26=1$ and $\mathrm{c} 35=1$).
WARNING: while the multipositioner is enabled parameters P02, P08, P13, P14, P18 are used by the internal SW, thus the value can be overwritten.

1.1. PARAMETERS FOR THE MOVEMENTS

Following parameters can be set for each movement:

- movement number N
- Vmax (\%)
- ramp1 (ms)
- ramp2 (ms)
- displacement (enc. puls.)

1.2. SEQUENCE

Set c71 = $\mathbf{0}$ to enable the SEQUENCE MODE; in c72 must be set the number of the last movement in the sequence (that number cannot exceed 12). Following commands are allowed for the sequence; the user can give the commands through a logic input or a software switch (logic OR):

L.I. function	sw switch	command	description
22	$c 73$	FIRST	execute the first movement of the sequence
23	$c 74$	PREV	execute the previous movement of the sequence
24	$c 75$	NEXT	execute the next movement of the sequence
25	$c 76$	LAST	execute the last movement of the sequence
26	$c 77$	RESET	reset the sequence
27	$c 78$	SKIPR	skip the previous movement
28	$c 79$	SKIPF	skip the next movement
29	$c 80$	REPEAT	repeat actual movement

The numbers in the first column can be programmed in the software switches c1, c3, c4, c5, c6, c15, c16 to select the function of Logic Inputs.

1.3. INDIVIDUAL SELECTION THROUGH LOGIC INPUTS

Set $\mathbf{c} 71=1$ to enable INDIVIDUAL SELECTION MODE through L.I.
The selection of the movement is made by a binary code set through the logic inputs:

L.I. function	sw switch	descrizione
30	c81	Start command
32	$/$	bit 0 of the movement selection code
33	$/$	bit 1 of the movement selection code
34	$/$	bit 2 of the movement selection code
35	$/$	bit 3 of the movement selection code

The configuration of the logic inputs is read at the low-to high commutation of the start command. The start command can be given to the converter through L.I. or software command c81=1. The switch c 81 will be reset automatically by the converter.

EXAMPLE 1:

settings: c5 = 32 (LI5 is bit 0), c6 = 33 (LI6 is bit 1), c7 = 34 (LI7 is bit 2), c8 = 35 (LI8 is bit 3).
suppose that when start goes high:

$$
\begin{array}{ll}
\mathrm{LI} 5=\mathrm{H} & \rightarrow \text { bit0 }=1 \\
\mathrm{LI} 6=\mathrm{L} & \rightarrow \text { bit1 }=0 \\
\mathrm{LI} 7=\mathrm{H} & \rightarrow \text { bit2 }=1 \\
\mathrm{LI} 8=\mathrm{L} & \rightarrow \text { bit3 }=0
\end{array}
$$

the binary code obtained is 0101, thus the selected movement is number:
$\mathrm{N}=$ 8*bit3 $^{*}+$ bit2*4 + bit1*2 + bit0*1 $=4+1=5$

EXAMPLE 2:

With the same settings of EXAMPLE 1, suppose that the desired movement is n .7 :
7 dec. $=111$ binary :

$$
\begin{array}{ll}
\text { bit0 }=1 & \rightarrow \text { LI5 }=\mathrm{H} \\
\text { bit1 }=1 & \rightarrow \text { LI6 }=\mathrm{H} \\
\text { bit2 }=1 & \rightarrow \text { LI7 }=\mathrm{H} \\
\text { bit3 }=0 & \rightarrow \text { LI8 }=\mathrm{L}
\end{array}
$$

1.4. INDIVIDUAL SELECTION THROUGH SOFTWARE SWITCH

Set c71 = 2 to enable INDIVIDUAL SELECTION MODE through software switch. The user must set in c89 the number of the desired movement.
If this mode is selected, the L.I. programmed with function $32 \div 35$ are ignored, and only c89 is considered. For the start command see the previous paragraph.

1.5. DISPLAYS AND LOGIC OUTPUTS

New outputs have been added to the standard version : the outputs (to be programmed in c7, c8, c18) for the end-of-movement signals are as follows:

L.O. function	description
17	movement n .1 executed (stop in position n .1)
18	movement n . 2 executed (stop in position n. 2)
19	movement n. 3 executed (stop in position n. 3)
20	movement n. 4 executed (stop in position n. 4)
21	movement n. 5 executed (stop in position n. 5)
22	movement n .6 executed (stop in position n. 6)
23	movement n . 7 executed (stop in position n. 7)
24	movement n. 8 executed (stop in position n. 8)
25	movement n. 9 executed (stop in position n. 9)
26	movement n .10 executed (stop in position n . 10)
27	movement n .11 executed (stop in position n . 11)
28	movement n .12 executed (stop in position n .12)

In the keypad are displayed following information:

	descrizione
d22	n. encoder pulses made in the actual movement (mod 20000)
d23	n. encoder pulses made in the actual movement (multiple of 20000)
d24	n. of the actual movement (1-12)

The same informations can be read from serial line, but the format is a little different:

	descrizione
d22	n. encoder pulses made in the actual movement (Least significant word)
d23	n. impulsi encoder percorsi nello spost. attuale (Most significant word)
d24	n. of the actual movement $(1 \div 12)$

WARNING: the user can insert a time pause after the end of a movement, in which commands are rejected: that time pause can be set in P100 ($0 \div 500 \mathrm{~ms}$).
example:

State diagrams of the sequence: the number of the movements is in the circles, and the arrows simbolize the commands:

1.6. SERIAL LINE SETTINGS: TDEMACNO PROTOCOL

WARNING: the movements can be programmed only thruogh serial line.
Data can be set through serial line with the following data frame (movement number N); that is an extension of the TDEMACNO serial protocol:
message to the converter:
data area

The answer from the drive is equal to "machine status" (see manual). In pareticular byte " Y " signals if settings are correct.

For the meaning of the bytes NS, TR, LD, Y, XR see user manual.
Data can be requested to the converter as follows (movement number N):
Message to the drive:

Answer from the converter:
data area

WARNING: the data of the movement can be saved in EEPROM giving the command $c 43=1$.

The field speed is expresseed as a percentage of the maximum speed: 16383 corresponds to 100.0% of maximum speed; -8192 corresponds to -50.0% of maximum speed.
The other fields are represented without conversion.

DMBL MULTI-POSITIONER MANUAL V1.03

The contents of this manual is referred to 6.04 software version

If you have any questions about equipment installation or working, do not hesitate to contact us:
brushless.products@tdemacno.it
via dell'oreficeria, 4136100 Vicenza tel.0444/343555
store: via dell'oreficeria, 27/B
Internet.address: http://www.tdemacno.com
Internet E-Mail: info@tdemacno.it
telefax 0444/343509

Without explicit writing authorisation from TDE MACNO is forbidden duplicate or memorise in any information system, any parts of this manuals.

TDE MACNO reserved itself the power of change in any moment the contents of this manual without particular warning

TDE MACNO declines any liability for errors in this manual and for the possible consequences.

