Products Tde Macno Installation OPDE DC-DC

INDEX

1	INTRC	DUCTION	2
	1.1 1.2 1.3 1.4 1.5	SYMBOLS USED IN THE CONVERTER MARKING	3 3 3
2	INTEN	IDED USE	5
	2.1	STATE OF "SWITCHED OFF" DEVICE	5
3	NAME	OF THE DEVICE	6
4	NAME	OF THE COMPONENTS AND MECHANICAL DIMENSIONS	7
5		AGE - HANDLING	
	5.1	STORAGE ENVIRONMENTAL CONDITIONS	
	5.2	RECOVERY PROCEDURE AFTER THE STORAGE	17
	5.3	HANDLING	
6	LIMITS	S OF USE	
	6.1 6.2	CLIMATIC CONDITIONS RESISTANCE TO CHEMICALLY ACTIVE SUBSTANCES	18 18
	6.3	RESISTANCE TO VIBRATIONS	18
	6.4	PROTECTION AND POLLUTION DEGREE	
7	INSTA	LLATION INSTRUCTIONS	19
	7.1 7.2	CLOSED ENVIRONMENT: DISSIPATED POWER ELECTRIC CONNECTIONS	
	7.2	Power side	
	7.2.2	EXAMPLES OF CONNECTION	24
	7.2.3	AVAILABLE POWER CONNECTIONS	
	7.2.4	POWER SUPPLIES	
	7.2.5	LOGICAL CONNECTIONS	
	7.2. 7.2.		
	7.2.		
	7.2.		
	7.3	Vo OUTPUT VOLTAGE FEEDBACK BOARD 4V0056	
	7.4	CONNECTION OF OPTIONAL CARDS	
	7.4.1	CAN BUS	
	7.4.2	PROFIBUS	
	7.4.3	ETHERCAT AND PROFINET	
	7.4.4		
	7.5	CONNECTION OF THE RS422/485 SERIAL LINE	
8			
	8.1	ELECTRIC CONNECTIONS	
	8.1.1		
	8.1.2	COMPONENTS FOR THE CONNECTION TO OUTPUT Vo	
	8.1.2		
	8.1.2		53

1 INTRODUCTION

This manual contains the necessary instructions for installing the OPDE DC-DC equipment. For other product information please refer to the "User's Manual" for the specific type of converter.

1.1 SYMBOLS USED IN THE CONVERTER MARKING

The OPDE DC-DC converter bears - outside and inside (in the accessible parts for wiring) - **labels** that indicate the presence of danger for people. Here below, there is a legend with the meaning of the symbols used:

SYMBOL	DESCRIPTION
\wedge	Caution, risk of danger
A	Caution, risk of electric shock
	Caution, risk of electric shock. Accumulation of energy, wait for the time indicated close to the symbol.
	Caution, hot surface
	Protective conductor fastening terminal
Ĩ	Refer to the installation manual

TAB. 1 – Symbols

1.2 WARRANTY

- 1) Within the limits set forth in this warranty, the undersigned manufacturer undertakes to repair any and all manufacturing defects that occur during the warranty period.
- 2) The warranty becomes void if the purchaser does not properly follow all the instructions described in these "Installation Instructions".
- 3) In order to take advantage of the right of warranty, the purchaser, upon occurrence of the fault, shall timely notify it to the manufacturer and allow the same, if necessary, to carry out the related inspections and repairs.
- 4) The purchaser shall bear the transport charges to send the defective part covered by warranty to the manufacturer and then back to the purchaser, in order to allow the repair or replacement of the same. The warranty obligation, as provided in this clause, shall be deemed fulfilled with the delivery to the purchaser of the part properly repaired or replaced.
- 5) During the warranty period referred to in clause 1), labor costs for the repair will be borne by the manufacturer. If repairs or replacements have to be made at the customer's premises, the costs of travel and lodge of the personnel shall be borne by the purchaser.
- 6) The guarantee does not include breaks caused by wrong operation, incompetence, accident or otherwise attributable to the user, both due to himself and to third parties, or when the user has made modifications or repairs without the written consent of the manufacturer, regardless of the connection between such changes or repairs and the detected defects.
- 7) It is expressly agreed that the manufacturer will be relieved from any responsibility for any damages caused to the purchaser by a loss of or decreased production, resulting from manufacturing faults or defects.

1.3 CE MARKING / RATING PLATE

The CE marking certifies the conformity of the equipment with the essential safety and health requirements set forth by the European Directives mentioned on the Declaration of CE Conformity.

The rating plate consists of a silver polyester adhesive label with black print, having the following dimensions: L= 102 mm - H= 50 mm (FIG. 1). It is applied externally on one side or on the front panel. The rating plate bears the logo, CE marking, type, serial number, main rating data, and power supply voltages.

FIG. 1 – CE marking and rating plate

1.4 IMPORTANCE OF THE MANUAL

BEFORE USING THE EQUIPMENT, THE AUTHORIZED OPERATORS MUST MANDATORY READ AND UNDERSTAND THIS MANUAL IN ALL ITS PARTS.

This technical installation manual was drawn in order to assure an easy and correct understanding of the covered contents by the operators entrusted with the use and maintenance of the involved equipment.

If, despite the attention paid by the manufacturer in drawing up this document, the above mentioned operators should have any doubts concerning the understanding of the document, in order to avoid misinterpretations that may jeopardize safety, they are kindly requested to promptly ask for correct explanations and further information to the manufacturer.

Before using the involved equipment, the authorized operators must mandatory read and understand this technical manual of "Instructions for installation" in all its parts and strictly follow the instructions herein described in order to assure one's own safety and that of others, attain better equipment performance, and assure maximum efficiency and duration of all machine components.

This manual shall be available for the authorized operators at any time and shall always be well stored and protected close to the equipment.

THIS MANUAL SHALL ALWAYS BE AVAILABLE FOR THE AUTHORIZED OPERATORS AND SHALL ALWAYS BE CLOSE TO THE EQUIPMENT, WELL STORED AND PROTECTED.

THE MANUFACTURER SHALL NOT BE MADE LIABLE FOR ANY DAMAGES TO PEOPLE, ANIMALS AND/OR THINGS CAUSED BY THE INOBSERVANCE OF THE INSTRUCTIONS AND WARNINGS HEREIN CONTAINED.

IN CASE OF TRANSFER OF THE EQUIPMENT TO ANOTHER USER, IT IS COMPULSORY FOR THIS MANUAL TO BE HANDED OUT TOGETHER WITH THE EQUIPMENT.

THIS MANUAL COMPLIES WITH THE STATE OF THE ART OF TECHNOLOGY AT THE TIME OF THE TRADING OF THE EQUIPMENT AND SHALL NOT BE CONSIDERED INAPPROPRIATE IF, DUE TO NEW EXPERIENCES, IT MAY BE UPDATED LATER ON.

IN CASE OF LOSS OR DETERIORATION OF THE MANUAL REQUEST A COPY FROM THE MANUFACTURER SPECIFYING THE IDENTIFICATION DATA OF THE EQUIPMENT (SEE CE MARKING / RATING PLATE) AND THE REVISION.

IF THE INVOLVED EQUIPMENT IS USED IN A DIFFERENT WAY THAN THAT SPECIFIED BY THE MANUFACTURER, THE SAFETY GIVEN BY THE EQUIPMENT COULD BE LOST.

1.5 READING HINTS

THE GENERIC HAZARD SIGN AND THE FRAMED TEXT IN CAPITAL LETTERS FOCUSES THE ATTENTION OF THE USER ON THE WARNINGS CONTAINED IN THIS MANUAL.

Bold: It highlights some meaningful sentences in the text.

2 INTENDED USE

DC/DC power conversion
In a close, covered, and dry environment showing the temperature and humidity values indicated under TAB. 7 , TAB. 8 , TAB. 9 , TAB. 10 and complying with the law provisions in force in the country of use concerning occupational safety and health in the place of work. The converter OPDE DC-DC must be fixed to a wall that assures its stability in relation to the involved overall dimensions and weight (TAB. 3A, TAB 3B, TAB 3C), and respecting the minimum positioning measures.
N.B.: IN THE PLACE OF USE OF THE ENERGY OPDE CONVERTER, THE PRESENCE OF WATER OR HUMIDITY ABOVE 95% THAT CAN EASE OR INCREASE THE RISK OF ACCIDENTAL ELECTRIC SHOCK AND/OR CAUSE DAMAGE TO THE SAME IS STRICTLY FORBIDDEN.
This technical manual is intended exclusively for the authorized operators entrusted with the use and maintenance of the equipment according to the specific technical and professional skills required by the type of works.
THE AUTHORIZED OPERATORS SHALL PERFORM ON THE EQUIPMENT EXCLUSIVELY THE INTERVENTIONS INCLUDED IN THEIR SPECIFIC AREA OF COMPETENCE. BEFORE PERFORMING ANY INTERVENTION ON THE EQUIPMENT, THE AUTHORIZED PEOPLE SHALL MAKE SURE TO BE IN SUCH A MENTAL AND PHYSICAL CONDITION AS TO ASSURE THE OBSERVANCE OF SAFETY CONDITIONS AT ANY TIME.
The entrusted operator is a qualified technician (a suitable person meeting the technical and professional requirements required by current standards), authorized to install and use the equipment operating even in the presence of voltage and with disabled protections (with the consent of the Safety Manager) in strict compliance with the instructions contained in this manual or any other document, which is provided exclusively by the manufacturer.

The **OPDE DC-DC converter** has been designed and implemented for the following intended use:

2.1 STATE OF "SWITCHED OFF" DEVICE

Before performing any type of maintenance and/or adjustment on the equipment, it is compulsory to disconnect the power source. The converter can be considered turned off when at least one of the following conditions is met:

- the main switches on the DC mains side are disconnected;
- the fuses series connected to the DC mains and DC bus are removed;

• not any power supply is provided.

Moreover, it is necessary to wait at least minimum 8 minutes to be sure that all the live parts are discharged as indicated in the adhesive labels applied to the OPDE DC-DC (FIG. 2) converter.

FIG. 2 – Sign labels

NAME OF THE DEVICE 3

The device in question is called as follows: **OPDE DC-DC** The code OPDE-SD DC-DC that is shown on the device label is described below.

	6		Level	6 = level 6			
D	1		OPDE	D1= OPDE			
	D		Туре	D= OPDE-SD DC-DC			
			Size	022 = 22A - 032 = 32A - 040 = 40A - 048 = 48A - 060 = 60A - 070 = 70A - 090 = 90A 110 = 110A 150 = 150A (CASE1 C) - 175 = 175A - 220 = 220A - 250 = 250A (CASE2) - 310 = 310A - 370 =370A - 460 = 460A (CASE3)			
			Overload	X = Standard (5kHz PWM) (All possible overloads) C = 3 kHz PWM			
5	D]	Mains voltage	5D = 560V VDC			
	М		Drive	M = Drive + Reg. \rightarrow 24V external (case1C, 2, 3)			
	0		Brake	0 = NO BRAKE			
	0	İ	Speed sensor 1	0= no feedback			
	0		Speed sensor 2	0= no feedback			
		Ì	Fieldbus	0= No fieldbus 1= Profibus 3= Can Bus4= Ethercat 5= Hsc (high speed communication)			
			I/O	0 = No U = Display + I/O + RS485 serial line OPTO + USB port X = Display + I/O + RS485 serial line OPTO			
	0		Field	0 = Standard			
	v		Customization	V= standard BDF Digital (a different letter refers to a specific customization)			

4 NAME OF THE COMPONENTS AND MECHANICAL DIMENSIONS

FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, TAB. 3A, TAB. 3B, TAB 3C, TAB 3D, TAB 3E represent and show the names of the main components and the overall dimensions of the OPDE DC-DC converter.

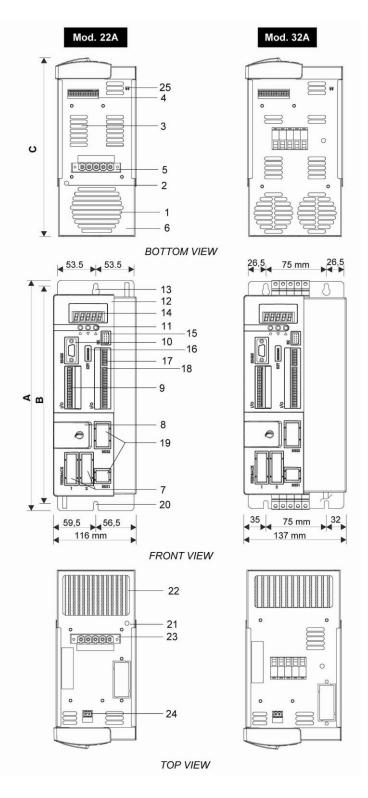


FIG. 3 – Name of the components OPDE SD 22 and 32

LEGEND 3:

- 1. Bottom ventilation openings
- Ground terminal for motor cable 2.
- Ventilation openings 3.
- Connector for management of motor thermal probes and simulated encoder (M4) 4.
- Terminal board for motor and braking resistor connection 5.
- Case 6.
- 7. Feedback boards (option)
- 8. Removable plastic cover
- 9. Digital and analog I/O connector (M1)
- 10. Serial port 485/422 (J1)
- 11. Push buttons to set and display the parameters
- 12. Fixed plastic cover
- 13. Upper mounting bracket
- 14. Drive status parameters and display
- 15. Connector for hand-held or remote keypad
- 16. Connector for parametrization key
- Frequency input connector (M2)
 Digital and analog I/O connector (M3)
- 19. Fieldbus connector (option)
- 20. Lower mounting bracket
- 21. Ground terminal
- 22. Top ventilation openings
- 23. Line input terminal
- 24. Power connector for regulation board or output +24V (X3)
- 25. +24V power supply connector for cooling fans (X8)

MOD. OPDE-SD DC-DC		22	32
Height [mm]	А	303	322
	В	287	287
Width [mm]		116	137
Depth [mm]	С	253	253
Fastening screws		M4	M4
Weight [kg]		5,5	6,4

TAB. 2A - Mechanical dimensions and weight of OPDE SD 22 and 32

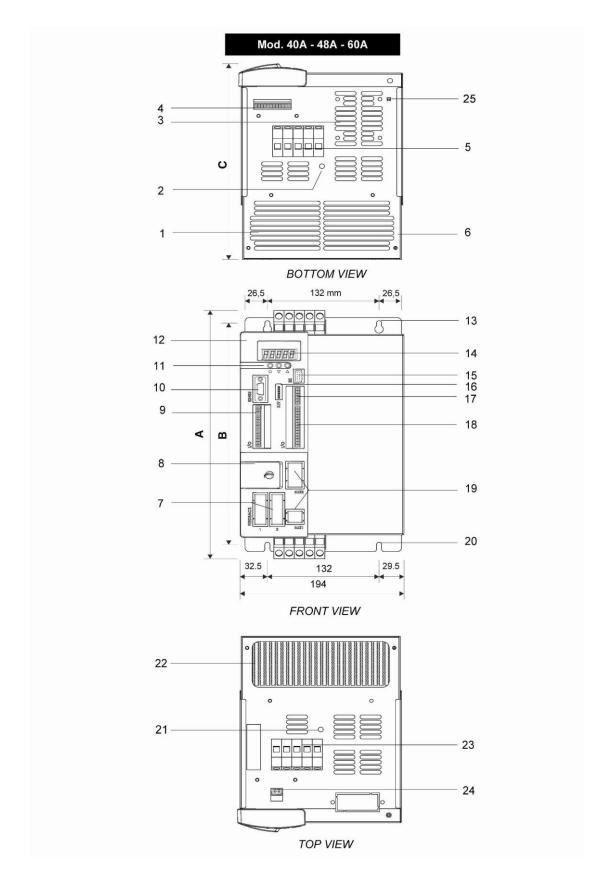


FIG. 4 - Name of the components OPDE SD 40, 48 and 60

LEGEND FIG. 4:

- 1. Bottom ventilation openings
- Ground terminal for motor cable 2.
- Ventilation openings 3.
- Connector for management of motor thermal probes and simulated encoder (M4) 4.
- Terminal board for motor and braking resistor connection 5.
- Case 6.
- 7. Feedback boards (option)
- 8. Removable plastic cover
- 9. Digital and analog I/O connector (M1)
- 10. Serial port 485/422 (J1)
- 11. Push buttons to set and display the parameters
- 12. Fixed plastic cover
- 13. Upper mounting bracket
- 14. Drive status parameters and display
- 15. Connector for hand-held or remote keypad
- 16. Connector for parametrization key
- Frequency input connector (M2)
 Digital and analog I/O connector (M3)
- 19. Fieldbus connector (option)
- 20. Lower mounting bracket
- 21. Ground terminal
- 22. Top ventilation openings
- 23. Line input terminal
- 24. Power connector for regulation board or output +24V (X3)
- 25. +24V power supply connector for cooling fans (X8)

MOD. OPDE-SD DC-DC		40-48	60
Height [mm]	А	322	322
	В	287	287
Width [mm]		194	194
Depth [mm]	С	273	273
Fastening screws		M4	M4
Weight [kg]		9,3	10

TAB. 3B - Mechanical dimensions and weight of OPDE SD 40, 48 and 60

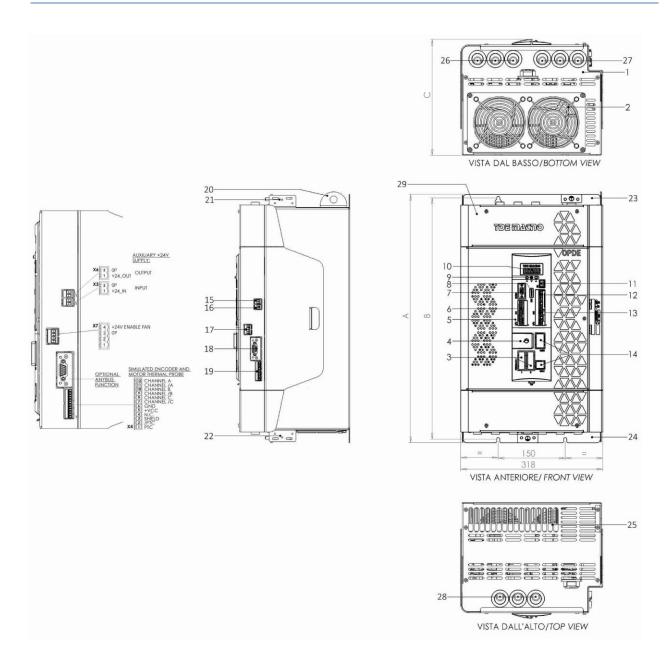


FIG. 5 - Name of the components OPDE SD 70, 90, 110 and 150

LEGEND FIG. 5:

- 26. Case
- 27. Extractable cooling fan
- 28. Feedback boards (option)
- 29. Removable plastic cover
- 30. Fixed plastic cover
- 31. Digital and analog I/O connector (M1)
- 32. Serial port 485/422 (J1)
- 33. Connector for parameterization key
- 34. Push buttons to set and display the parameters
- 35. Drive status parameters and display
- 36. Connector for hand-held or remote keypad
- 37. Frequency input connector (M2)
- 38. Digital and analog I/O connector (M3)
- 39. Fieldbus connector (option)
- 40. +24 VDC output connector (X6)
- 41. +24 VDC regulation board power supply (X3)
- 42. +24VDC connector for enabling cooling fans supply (X7)
- 43. Anybus connector (X5) (option)
- 44. Connector for management of motor thermal probes and simulated encoder (X4)
- 45. Lifting eyebolts
- 46. Upper shield bracket
- 47. Lower shield bracket
- 48. Upper mounting bracket
- 49. Lower mounting bracket
- 50. Top ventilation openings
- 51. Grid input power connections
- 52. Output power connections (motor side)
- 53. Positive and negative DC bus and braking power connections
- 54. Internal +24V power supply connector for cooling fans (X8)

MOD. OPDE-SD DC-DC		70, 90, 110, 150
Hoight [mm]	А	556
Height [mm]	В	540
Width [mm]		318
Depth [mm]	С	259
Fastening screws		M6
Weight [kg]		24

TAB. 4C - Mechanical dimensions and weight of OPDE SD 70, 90, 110 and 150

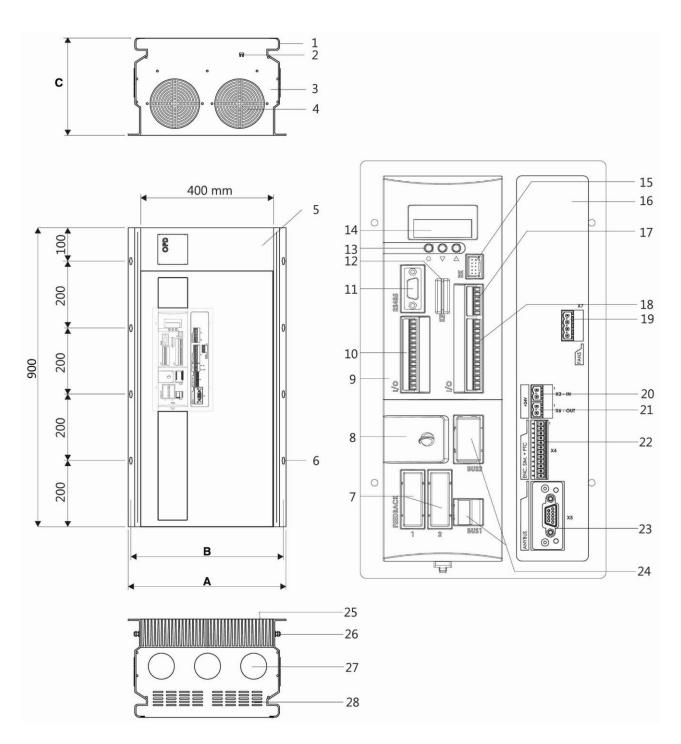


FIG. 6 - Name of the components OPDE SD 175, 220 and 250

LEGEND FIG. 6:

- 1. Case supporting shoulders or wall hooking
- 2. +24V power supply connector for cooling fans (X8)
- 3. Case
- Cooling fans of the power module
 Panel covering the power terminal
 Mounting holes Panel covering the power terminals
- 7. Feedback boards (option)
- 8. Removable plastic cover
- 9. Fixed plastic cover
- 10. Digital and analog I/O connector (M1)
- 11. Serial port 485/422 (J1)
- 12. Connector for parameterization key
- 13. Keys for setting and displaying the parameters
- 14. Display for converter status and parameter display
- 15. Connector for handheld or remote keypad
- 16. Fixed cover
- 17. Frequency input connector (M2)
- 18. Digital and analog I/O connector (M3)
- 19. +24VDC connector for enabling cooling fans supply (X7)
- 20. +24 VDC regulation board power supply (X3)
- 21. +24 VDC output connector (X6)
- 22. Connector for the management of the temperature sensors of the motor and simulated encoder (X4)
- 23. Anybus connector (X5)
- 24. Fieldbus connector (option)
- 25. Cooling heat sink fins
- 26. Ground terminal
- 27. Holes for cable/bar passage
- 28. Upper side venting openings

MOD. OPDE AFE ENERGY		175, 220, 250
Height [mm]		900
	Α	478
Width [mm]	В	462
Depth [mm]	С	296
Fastening screws		M6
Weight [kg]		65

TAB. 3D - Mechanical dimensions and weight of OPDE SD 175, 220, 250

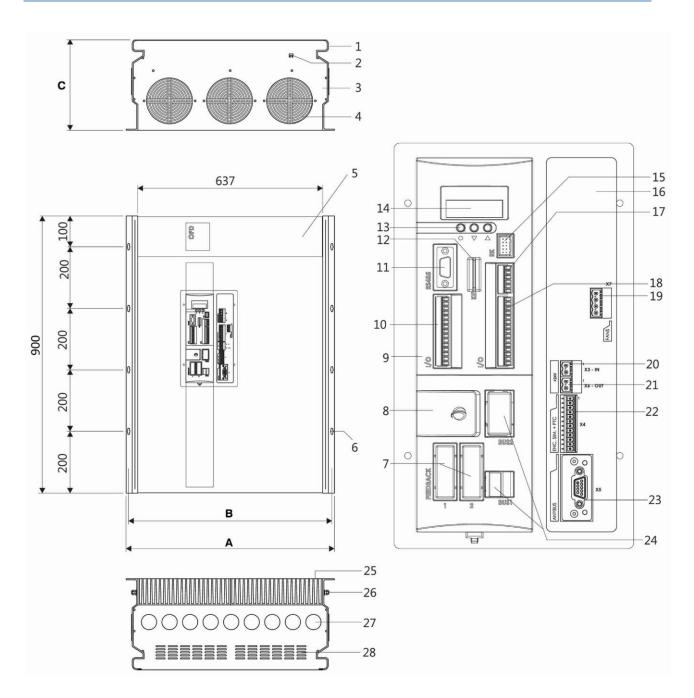


FIG. 7 – Name of the components OPDE SD 310, 370 and 460

LEGEND FIG. 7:

- 1. Case supporting shoulders or wall hooking
- 2. +24V power supply connector for cooling fans (X8)
- 3. Case
- Cooling fans of the power module
 Panel covering the power terminals
 Mounting holes
- 7. Feedback boards (option)
- 8. Removable plastic cover
- 9. Fixed plastic cover
- 10. Digital and analog I/O connector (M1)
- 11. Serial port 485/422 (J1)
- 12. Connector for parameterization key
- 13. Keys for setting and displaying the parameters
- 14. Display for converter status and parameter display
- 15. Connector for handheld or remote keypad
- 16. Fixed cover
- 17. Frequency input connector (M2)
- 18. Digital and analog I/O connector (M3)
- 19. +24VDC connector for enabling cooling fans supply (X7)
- 20. +24 VDC regulation board power supply (X3)
- 21. +24 VDC output connector (X6)
- 22. Connector for the management of the temperature sensors of the motor and simulated encoder (X4)
- 23. Anybus connector (X5)
- 24. Fieldbus connector (option)
- 25. Cooling heat sink fins
- 26. Ground terminal
- 27. Holes for cable/bar passage
- 28. Upper side venting openings

MOD. OPDE AFE ENERGY		310, 370, 460
Height [mm]		900
	Α	678
Width [mm]	В	662
Depth [mm]	С	296
Fastening screws		M6
Weight [kg]		80

TAB. 3E - Mechanical dimensions and weight OPDE SD 310, 370 and 460

5 STORAGE - HANDLING

5.1 STORAGE ENVIRONMENTAL CONDITIONS

If the **OPDE DC-DC converter** has to remain stored for a long time, it is necessary to store it in a safe environment with an adequate temperature and humidity degree, and protected against dust.

Temperature	-20÷60	°C
Humidity	5÷95	%
Condensation	NO	

EVERY 6 MONTHS – 1 YEAR, IT IS NECESSARY TO REGENERATE THE POWER BUS CAPACITORS. FIRST IMPLEMENT THE RECOVERY PROCEDURE AFTER STORAGE (PAR. 5.2) WITH SWITCHED OFF CONVERTER. THEN, FEED THE OPDE ENERGY THROUGH X3 (AUXILIARY POWER SUPPLY FOR THE ADJUSTMENT SIDE) AND THE + AND - BARS (POWER SUPPLY OF THE POWER SIDE) FOR AT LEAST 2 HOURS WITHOUT GIVING THE RUNNING CONSENT.

5.2 RECOVERY PROCEDURE AFTER THE STORAGE

The converter cannot be used immediately after a storage period. To prevent faults, it is necessary to adopt the following recovery procedure.

PHASE 1: Let the converter stay for an hour under the environmental conditions specified in TAB. 6

Not powered converter					
Temperature	°C				
Humidity	5÷75	%			
Condensation	NO				
Atmospheric pressure	86÷106	kPa			
Recovery time ⁽¹⁾	1	h			

⁽¹⁾After this recovery time, there should be no trace of condensation inside or outside the converter (well ventilated environment).

TAB. 6 – Recovery after storage

PHASE 2: If the time since the last regeneration of the electrolytic capacitors in the power bus is included between 6 months and one year, it is necessary to perform the regeneration once again: feed the OPDE DC-DC through the terminal X3 (24 Vdc auxiliary power supply for the regulation side) and the + and - bars (560 Vdc power supply of the power side, by means of external precharge) for at least 2 hours without giving the running consent.

Once the regeneration process has ended, the converter can work normally.

THE REGENERATION PROCEDURE OF THE POWER BUS ELECTROLYTIC CAPACITORS GIVEN ABOVE IS NO MORE VALID IF:

- THE TIME ELAPSED SINCE THE LAST REGENERATION IS GREATER THAN 1 YEAR
- THE TIME ELAPSED SINCE THE PURCHASE IS GREATER THAN 1 YEAR AND THE REGENERATION PROCEDURE HAS NEVER BEEN DONE
 IN THESE CASES IT IS NECESSARY TO REQUEST EROM RDE DIGITAL WHICH IS THE

IN THESE CASES, IT IS NECESSARY TO REQUEST FROM BDF DIGITAL WHICH IS THE OPERATING PROCEDURE TO BE ADOPTED.

5.3 HANDLING

The OPDE DC-DC converters size 175, 220, 250, 310, 370 and 460, after unpacking, are easily transportable with a forklift truck or a crane equipped with suitable lifting hooks to be attached to the lifting brackets applied on the sides of the converters. Dimensions and weights are given in Chapter 4. For OPDE DC-DC converters size 70, 90, 110 and 150, instead, there are no brackets for lifting. Given their limited size and weight, the converters can be transported directly by the entrusted personnel.

Protect the equipment against bumps during handling.

6 LIMITS OF USE

OPDE DC-DC has to be installed inside an electrical panel, which can also not be conditioned. In this case, the environmental limits of use are given below.

6.1 CLIMATIC CONDITIONS

Environmental parameter	Limits	Measure ment unit
Operating temperature	-20÷50	°C
Humidity	5÷95	%
Atmospheric pressure	70÷106 ⁽¹⁾	kPa
Maximum movement of the surrounding air	1	m/s
Maximum temperature gradient	0.5	°C/min
Maximum thermal radiation	700	W/m ²
Condensation	NO	
Rainfall with wind	NO ⁽²⁾	
Water of different origin from rain	NO	
Icing	NO	

⁽¹⁾The air pressure limits correspond to an operating field of 0÷2000m a.s.l. In fact, over 1000 m above sea level, it is necessary to derate the rated current of the converter by 1% per 100 m. ⁽²⁾ The converter must be installed inside an electrical panel and, therefore, not outdoor.

TAB. 7 - Climatic conditions

6.2 RESISTANCE TO CHEMICALLY ACTIVE SUBSTANCES

3C1R class according to EN 60721-3-3

Environmental parameter	Maximum value	Measurem ent unit
Sea salts	NO	-
Sulfur dioxide	0.01 0.0037	mg/m ³ cm ³ /m ³
Hydrogen sulfide	0.0015	mg/m ³ cm ³ /m ³
Chlorine	0.001 0.001	mg/m ³
Hydrochloric acid	0.00034 0.001	cm ³ /m ³ mg/m ³
	0.00066	cm ³ /m ³

Environmental parameter	Maximum value	Measurem ent unit
Hydrofluoric acid	0.001	mg/m ³
-	0.0012	cm ³ /m ³
Ammonia	0.03	mg/m ³
	0.042	cm ³ /m ³
Ozone	0.004	mg/m ³
	0.002	cm ³ /m ³
Nitrogen oxide	0.01	mg/m ³
-	0.005	cm ³ /m ³

TAB. 8 - Resistance to chemically active substances

RESISTANCE TO VIBRATIONS 6.3

As regards vibrations, the limits of use are the following:

10H	$z \le frequency \le 57Hz$	0,075	mm (amplitude)
57H	$z \le frequency \le 150Hz$	1	G

TAB. 9 - Vibrations

In the case of vibration above the indicated limits, it is necessary to adopt suitable damping solutions.

6.4 PROTECTION AND POLLUTION DEGREE

Protection degree IP00 Pollution degree 2

TAB. 10 - Protections

7 INSTALLATION INSTRUCTIONS

OPDE DC-DC has to be installed under the ambient conditions specified in the section "Limits of use" and in compliance with the following instructions:

- 1) Position the OPDE DC-DC converter observing the minimum positioning measures.
- 2) Connect the OPDE DC-DC converter to the wall using screws, according to the dimensions shown.
- 3) Prevent metallic residues resulting from drilling or works performed on connection electrical cables from falling into the converter.
- 4) In no case, the converter has to be mounted close to easily flammable materials.

Â

IT IS COMPULSORY TO HAVE AUTHORIZED OPERATORS PERFORM THE INSTALLATION OF THE OPDE DC-DC CONVERTER

IT IS COMPULSORY TO INSTALL THE OPDE DC-DC CONVERTER BEING SURE THAT THE ELECTRICAL PANEL TO WHICH IT IS GOING TO BE CONNECTED DOES NOT SHOW ANY POWER SUPPLY.

ANY OPERATION WITHIN THE OPDE DC-DC CONVERTER MUST BE DONE WITHOUT VOLTAGE PRESENCE AND, IN ANY CASE, WAIT FOR AT LEAST 8 MIN. BEFORE ACCESSING THE SAME (FIG. 2).

IT IS COMPULSORY TO INSTALL THE OPDE DC-DC CONVERTER ONLY IN VERTICAL POSITION BECAUSE ONLY IN THIS WAY HEAT CONVECTION IS NOT HINDERED, WHICH WOULD CAUSE DAMAGES. IF IT IS NECESSARY TO INSTALL THE CONVERTER IN NON VERTICAL POSITION CONTACT THE TECHNICIAN OF BDF DIGITAL TO EVALUATE THE SITUATION CASE BY CASE.

IT IS COMPULSORY TO ASSURE A GOOD ACCESS TO ALL THE CONTROL ELEMENTS.

OPDE DC-DC MUST NECESSARILY BE INSTALLED CLOSE TO THE SUPPORT WALL IN ORDER TO PROPERLY CHANNEL THE AIR FLOW IN THE HEAT SINK.

IT IS COMPULSORY TO INSTALL SEVERAL OPDE DC-DC DRIVES SIDE BY SIDE TO ASSURE A GOOD VENTILATION AND PREVENT THE COOLING AIR FLOW OF A CONVERTER FROM AFFECTING THE OTHER.

THE CONVERTER INSTALLATION SHALL NOT HINDER ACCESS TO DISCONNECTING AND CUTTING-OFF TOOLS.

IF THE CONVERTER IS USED IN A DIFFERENT WAY THAN THOSE SPECIFIED BY THE MANUFACTURER, THE PROTECTIONS PROVIDED BY THE CONVERTER ARE NOT GUARANTEED.

7.1 CLOSED ENVIRONMENT: DISSIPATED POWER

TAB. 11 indicates the power dissipated by the converter operating at rated current, including adjustment, ventilation and power IGBT losses. During an installation in a closed environment, e.g. in a cabinet, it is necessary to make sure that the inner temperature does not exceed the ambient temperature permissible for the converter. The environment has to be ventilated with a sufficient air quantity as to remove the heat generated by the same and by the other components.

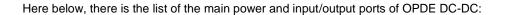
Size	Dissipated power [W]	Air flow rate [m ³ /h]
70	800	308
90	1100	360
110	1200	460
150	1500	820
175	1900	820
220	2500	1080
250	2700	1080
310	3300	1620
370	3900	1620
460	3500	1620

TAB. 11 – Dissipated power

SOME PARTS OF THE CONVERTER METAL CASE MAY EXCEED 70 °C DURING OPERATION. THEY ARE MARKED BY THE SPECIAL LABEL "CAUTION, HOT SURFACE" SHOWN HERE ON THE SIDE.

7.2 ELECTRIC CONNECTIONS

ALL THE FOLLOWING OPERATIONS ARE NECESSARY TO PREPARE THE ELECTRIC CONNECTION OF OPDE DC-DC CONVERTER.


DC INPUT VOLTAGE AND DC OUTPUT VOLTAGE SHALL SATISFY THE TECHNICAL FEATURES SHOWN IN THE TAB. 24A, 24B, 24C, 24D AND MEET THE REQUIREMENTS SET FORTH BY THE REGULATIONS IN FORCE IN THE COUNTRY OF USE THEREOF.

ANY TYPE OF ELECTRICAL EQUIPMENT (CABLES, OUTLETS, PLUGS, ETC.) USED FOR THE CONNECTION MUST BE SUITABLE FOR USE, "CE" MARKED - IF SUBJECT TO THE LOW VOLTAGE DIRECTIVE 2006/95/EC, AND COMPLY WITH THE REQUIREMENTS SET FORTH BY THE APPLICABLE LAW IN FORCE IN THE COUNTRY OF USE OF THE OPDE DC-DC CONVERTER.

THE MANUFACTURER DENIES ALL LIABILITY FOR FAULTS OR MALFUNCTIONS OF THE OPDE DC-DC CONVERTER DUE TO SUDDEN VOLTAGE CHANGES EXCEEDING THE TOLERANCES SET BY THE POWER DISTRIBUTION COMPANY (VOLTAGE \pm 10%).

FAILURE TO FOLLOW THE ABOVE PRECAUTIONS MAY RESULT IN PERMANENT DAMAGES TO THE ELECTRICAL EQUIPMENT OF THE OPDE DC-DC CONVERTER, AND IN THE FOLLOWING VOIDNESS OF THE WARRANTY.

THE MANUFACTURER DENIES ALL LIABILITY FOR ANY DAMAGES TO PEOPLE, ANIMALS AND/OR PROPERTY CAUSED BY THE INCORRECT ELECTRICAL CONNECTION OF THE OPDE DC-DC CONVERTER AND ITS COMPONENTS.

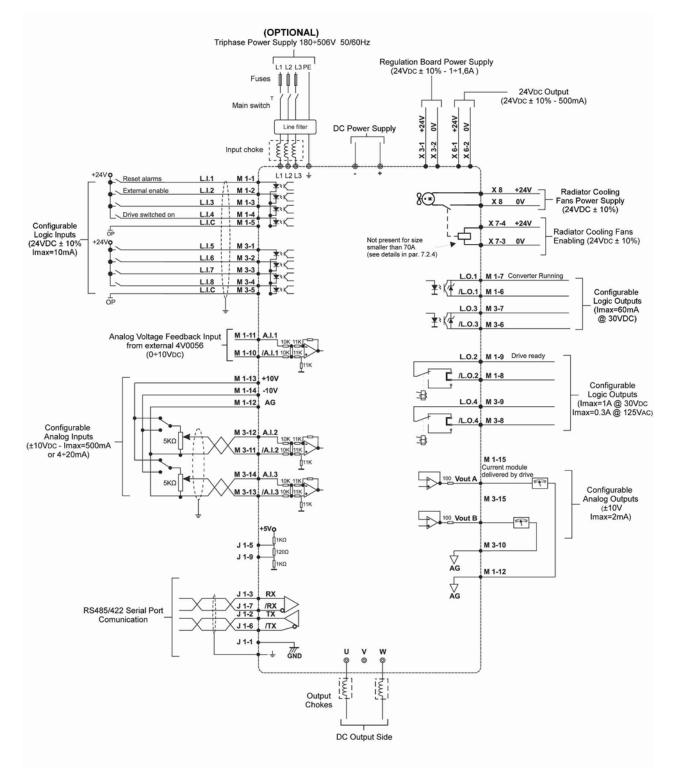


FIG. 8 – Electric connections

7.2.1 Power side

The OPDE SD converter is a two legs DC/DC converter with four IGBT bridge, it is bidirectional and operates in two quadrant mode. DC input power supply is the standard configuration.

Three phase AC input power supply can be required as an option, in this case the unit become an AC/DC converter with diode input bridge and unidirectional operation mode. The power stage is shown in the following figure.

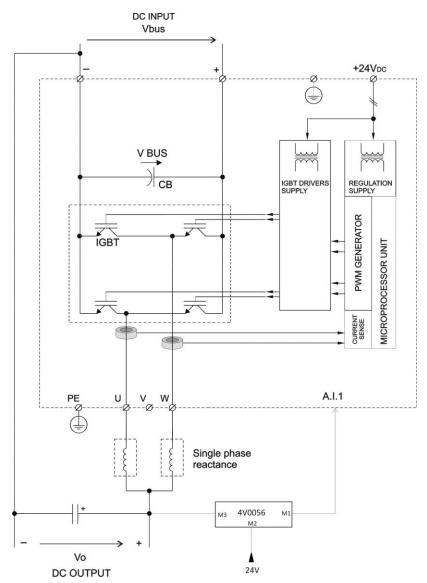


FIG. 9 - Power stage with DC input (standard)

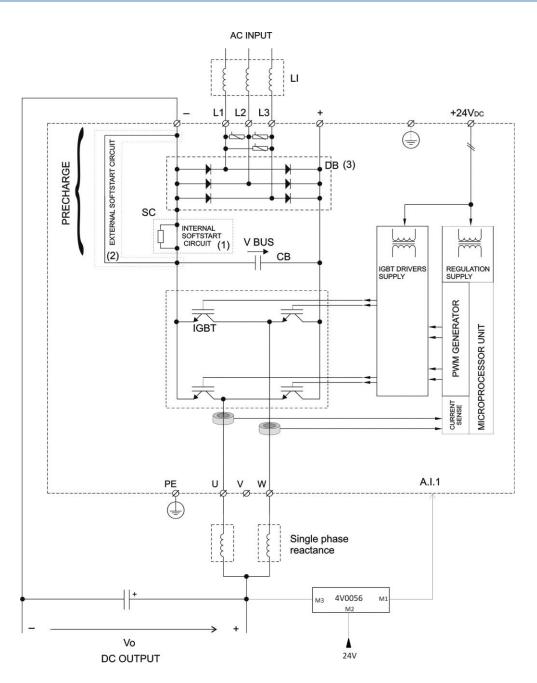


FIG. 10 - Power stage with AC input (optional)

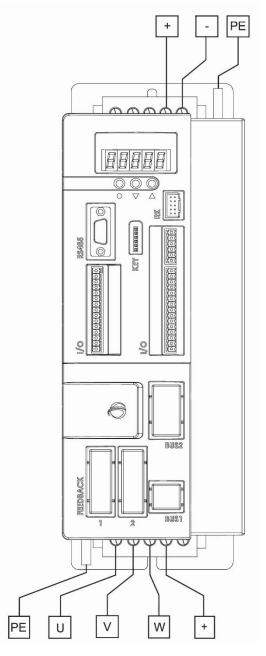
7.2.2 EXAMPLES OF CONNECTION

In order to be used in energy conversion applications, the OPDE DC-DC converter must be connected to other additional components necessary for its proper operation, in fact the OPDE DC-DC converter is a power and control unit of a four-IGBT bridge.

Externally, it is necessary to connect:

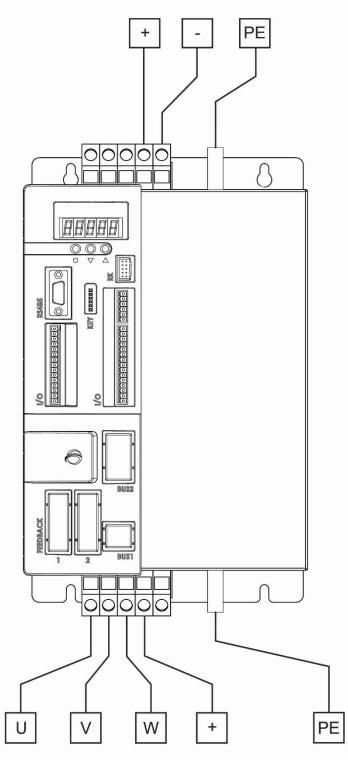
- an LC filter;
- a precharge circuit (optional);
- electromechanical devices for disconnecting and/or protecting the DC input and DC output side;
- other control devices if required (including insulation controllers and Residual Current Devices);
- EMC filters.

Normally, the OPDE DC-DC converter and the other external components are installed inside an electric cabinet that will be the final and complete electrical equipment.


Please refer to the **chapters** Errore. L'origine riferimento non è stata trovata. for examples for the correct connection of the OPDE DC-DC converter.

7.2.3 AVAILABLE POWER CONNECTIONS

The following figures show the arrangement of the power connections.



TO ACCESS POWER CONNECTIONS, IT'S COMPULSORY TO DISCONNECT THE DC SIDE VOLTAGE, WAIT FOR A DISCHARGE TIME EQUAL TO 8 min AND THEN REMOVE THE REMOVABLE PANEL THAT COVERS THE CONNECTIONS.

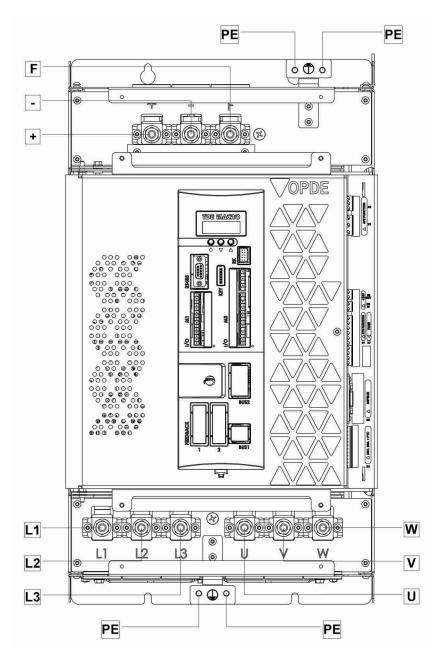
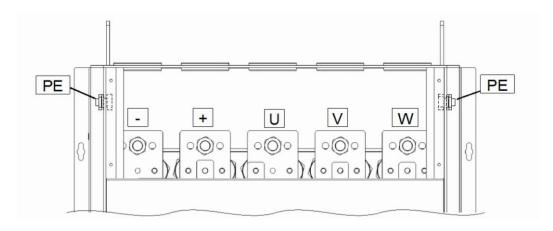
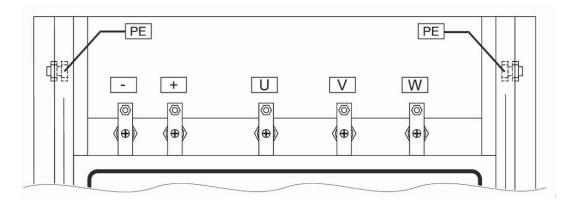

"+" "-": DC side input "U" "W": DC side output "PE": protective conductor connection

FIG. 11 – Power connections OPDE SD 22


"+" "-": DC side input "U" "W": DC side output "PE": protective conductor connection


"+" "-": DC side input "U" "W": DC side output "PE": protective conductor connection

"+" "-": DC side input "U" "W": DC side output "PE": protective conductor connection

FIG. 14 - Power connections OPDE SD 175, 220, 250 (CASE 2)

"+" "-": DC side input "U" "W": DC side output "PE": protective conductor connection

FIG. 15 - Power connections OPDE SD 310, 370, 460 (CASE 3)

7.2.4 POWER SUPPLIES

OPDE DC-DC requires two auxiliary power supply voltages: one for the power supply of the control (adjustment) side and driver, and one for the power supply of the cooling fans. The adjustment and driver power supply must be provided through the removable terminal X3, which is located on the front of OPDE DC-DC. The power supply of the fans, instead, must be provided through the bulkhead terminals on the bottom side of the converter.

X3	PIN	FUNCTION	DESCRIPTION
¥09 + 2	1	+24V	
+ 2) 4 Z			Control side and drivers power supply. Power supply voltage: 24Vdc (22÷26Vdc).
70A + 460A	2	٥V	7A – 60AMaximum absorbed current 1 A70A – 460AMaximum absorbed current 1.6 A

TAB. 12 - Connector X3

X8	PIN	FUNCTION	DESCRIPTION	
	+	+24V_F Heat sink cooling fans power supply. Power supply voltage: 24Vdc (22÷26Vdc). Maximum absorbed current:		Vdc (22÷26Vdc).
	-	0V_F	OPDE SD 7, 15, 22 OPDE SD 32 OPDE SD 48, 60 OPDE SD 70, 90, 110 OPDE SD 150, 175 OPDE SD 220, 250 OPDE SD 310, 370, 460	0.2 A 0.4 A 0.6 A 1.5 A 2.5 A 3.5 A

TAB. 13 – Fan terminal

X8 is just the power supply terminal of the fans. To enable the operation of the fans, it is necessary to connect a voltage of 24V between the terminals 3 and 4 of connector X7 (fig.15 left side). Using a generic logical output LOx set as "O32 - Enable DC-DC fans" and following the connection of (fig.15 right

side) it is possible to control the switching on of the fans based on the temperature of the heat sink.

Х7	PIN	FUNZIONE	DESCRIZIONE
	1	N.C.	Not connected
	2	N.C.	Not connected
	3	0V ENABLE AFE FAN	Enabling input of the ventilation fan.
	4	+24V ENABLE AFE FAN	+24V ±10% - min. 200mA

TAB. 14 - Internal fans enabling input

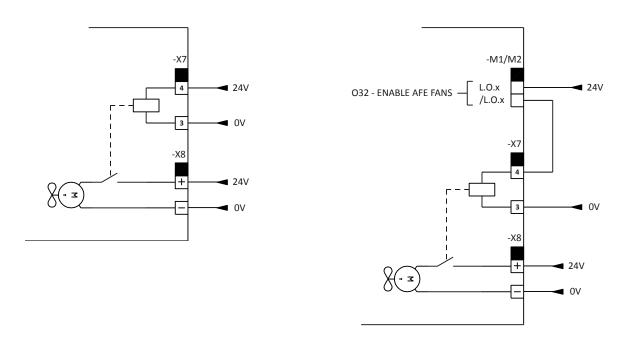


FIG. 16 – Example of connection of the fans power terminal (X8) and fans enabling terminal (X7). On the left, connection with fans always on. On the right, connection with fans controlled via L.O.x logical output set as "O32 – Enable DC-DC fans" (automatic switching-on depending on the heat sink temperature).

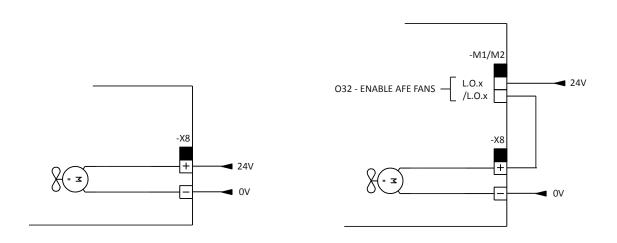


FIG. 17 – Example of connection of the fans power terminal (X8) and fans enabling terminal (X7) for size 22 ÷ 60A. On the left, connection with fans always on. On the right, connection with fans controlled via L.O.x logical output set as "O32 – Enable DC-DC fans" (automatic switching-on depending on the heat sink temperature). Use only digital output with relay L.O.2 or L.O.4.

7.2.5 LOGICAL CONNECTIONS

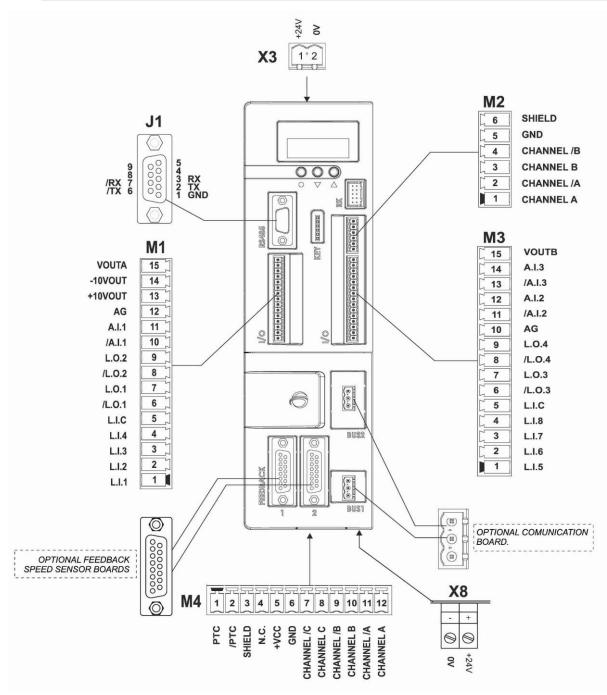


FIG. 18A – Logical Connections OPDE SD 22÷150

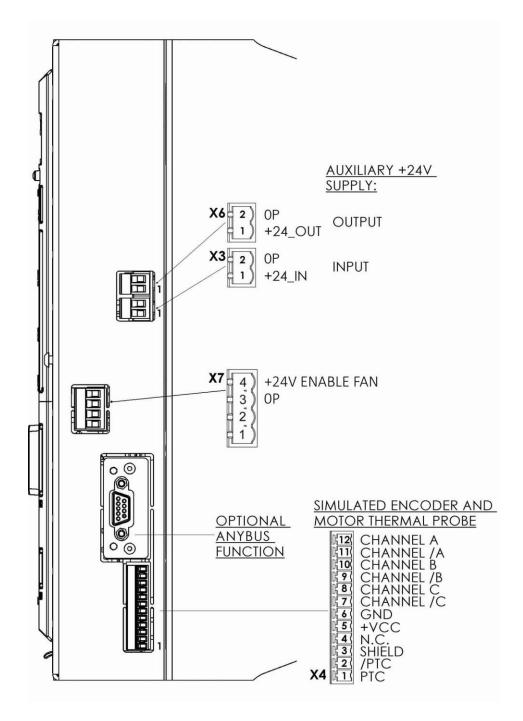


FIG. 17B - Logical Connections OPDE SD 70÷150 (side view)

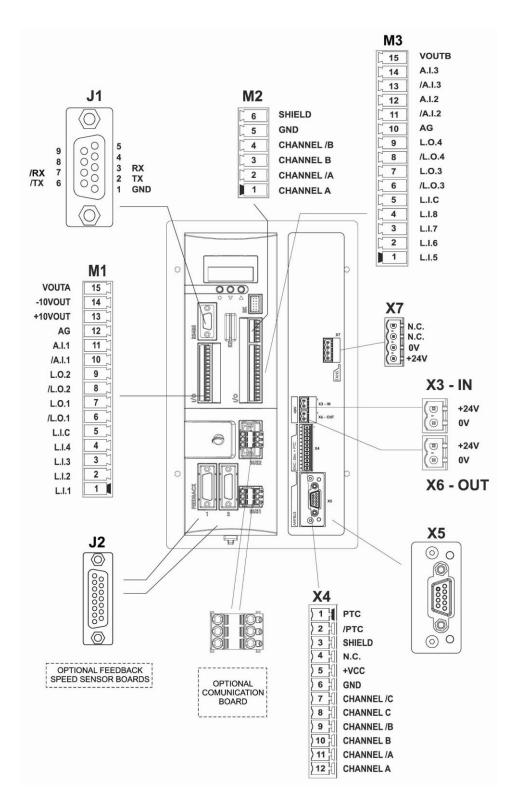


FIG. 17C – Logical Connections OPDE SD 175÷460

M1	PIN	FUNCTION	DESCRIPTION	
	1	L.I.1		
15	2	L.I.2	Configurable logical inputs (see FIG. 18A) All inputs are optically isolated from the internal regulation.	
	3	L.I.3	L.I.C. is the common of the inputs L.I.1, L.I.2, L.I.3, L.I.4. 24Vdc ±10% Imax=10mA	
	4	L.I.4		
	5	L.I.C	Common of the logical inputs to be connected to the negative of the input power supply.	
	6	/L.O.1	Configurable optically isolated logical output (see FIG. 18C) The transistor is conductive when the output is ON. Imax = 60 mA @ 30Vdc	
97	7	L.O.1		
8 7	8	/L.O.2	Configurable logical output with relay contact.	
	9	L.O.2	The contact is normally open. Imax = 1A @ 30VDC / 0.3A @ 125VAC	
5	10	/A.I.1	Analog Voltage Feedback Input from External 4V0056 (see FIG. 18B).	
	11	A.I.1	Input: +/-10V (max. 0.5 mA)	
3	12	AG	0V	
2	13	+10VOUT	- Stabilized power supply - 10mA maximum (ref. PIN 12).	
	14	-10VOUT		
	15	VOUTA	Configurable analog output (see FIG. 18D). Output: ± 10V /2mA.	

7.2.5.1 Digital and Analog Logical Connections

TAB. 15 - Connections: Digital and analog I/O

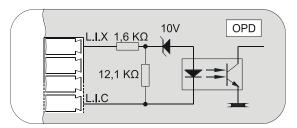


FIG. 18A - Configurable logical inputs

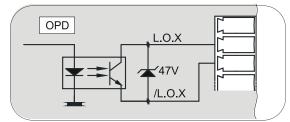


FIG. 18C - Configurable logical outputs

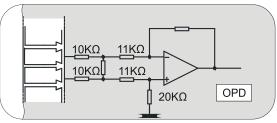


FIG. 18B – Configurable analog input

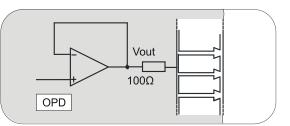


FIG. 18D - Configurable analog output

7.2.5.2 Frequency Input

M2	PIN	FUNCTION	DESCRIPTION			
	1	E-A	Channel A input, if differential (otherwise not connected). f max 300 kHz - 5 : 24V			
$\begin{bmatrix} 6 \\ 5 \end{bmatrix}$	2	E-/A (F)	Channel /A frequency input or frequency input. f max 300 kHz - 5÷24V			
<u> </u>	3	E-B	Channel B input, if differential (otherwise not connected). f max 300 kHz - 5÷24V			
	4	E-/B (UP)	Channel /B frequency or direction input. (UP/DOWN). f max 300 kHz - 5÷24V			
	5	GND	0V			
	6		Shield			

TAB. 16 – Frequency input

МЗ	PIN	FUNCTION	DESCRIPTION
	1 L.I.5		
15	2	L.I.6	Configurable logical inputs (see FIG. 18A) All inputs are optically isolated from the internal regulation. L.I.C. is the
<u> </u>	3	L.I.7	common of the inputs L.I.5, L.I.6, L.I.7, L.I.8. 24Vdc ±10% Imax=10mA
13	4	L.I.8	
	5	L.I.C	Common of all logical inputs to be connected to the negative of the input power supply.
11	6	/L.O.3	Fast configurable logical outputs (max. 5 kHz) (see FIG. 18C). All outputs are optically isolated from the internal regulation.
5 9	7	L.O.3	The transistor is conductive when the output is ON. Imax = 60 mA @ 30Vdc
8	8	/L.O.4	Configurable logical outputs with relay contact.
7	9	L.O.4	The contact is normally open. Imax = 1A @ 30VDC / 0.3A @ 125VAC
6	10	AG	0V
	11	/A.I.2	
	12	A.I.2	Configurable analog inputs (see FIG. 18B).
2	13	/A.I.3	Inputs: +/-10V (max. 0.5 mA) or 4 ÷ 20 mA, settable with the appropriate jumpers.
	14	A.I.3	
	15	VOUTB	Configurable analog output (see FIG. 18D). Output: ± 10V /2mA.

TAB. 17 - Connections: Digital and analog I/O

M4 / X4	M4 / X4 PIN		DESCRIPTION		
	1	PTC Bimetallic	Resistor thermal probe input (PTC or NTC or KTY84).		
	2	/PTC Bimetallic			
2	3	PE			
) 3 1	4	N.C.			
) 5	5	+Vcc	Vmax = 27Vdc		
) 6	6	GND			
7	7	CHANNEL /C			
	8	CHANNEL C			
) 9) 10 	9	CHANNEL /B	Connections for Simulated Encoder		
	10	CHANNEL B	(NOT MANAGED)		
12	11	CHANNEL /A			
	12	CHANNEL A			

7.2.5.4 Management of the Resistor Thermal Sensor

TAB. 18 – Management of the thermal sensor

7.3 Vo OUTPUT VOLTAGE FEEDBACK BOARD 4V0056

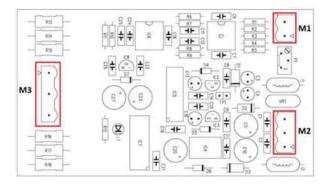
FIG. 19 – Isolated Voltage Transducer

The 4V0056 board is a voltage transducer that convertr a DC/AC High Voltage into -10V \div 10 V normalized signals, with galvanic isolation between input and output. There are different versions according to the Full Scale value and hardware filter.

4V0056 CODE VERSIONS (*)	FULL SCALE	HW FILTER	
374V005610V	550 Vdc	7 kHz	
374V005611V	1100 Vdc	7 kHz	
374V005612V	550 Vdc	700 Hz	
374V005613V	1100 Vdc	700 Hz	

(*) Other versions with F.S. custom range are available as optional

TAB. 19 - 4V0056 versions


THE BOARD IS SUPPLIED WITH IP00 PROTECTION. THE CUSTOMER MUST PROVIDE SUITABLE IP PROTECTION AGAINST ELECTRIC SHOCK

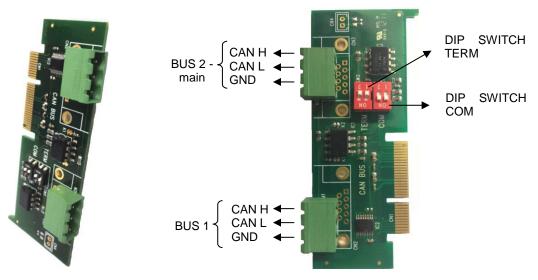
Main Characteristics:

- Galvanic isolation: 2.5kV between input and output power
- Input Voltage (M3):
 - with -550..+550Vdc / 0..385Vac, Vo = 0.01818 * Vi range
 - with -1100..+1100Vdc / 0..770Vac, Vo = 0.0909 * Vi range
 - with custom range (optional)
- Output Voltage (M1): -10..+10Vdc (protected against short-circuit)
- Minimum load in output: 2KOhm
- Accuracy: 1% FS
- Non-linearity: < 0.1%
- **Offset:** < 50mV
- Band: 3.2kHz @ -3dB (with 7 kHz hw filter)
- Supply Voltage (M2): 8..30Vdc (protected against reverse polarity)
- Power Consumption: < 1W
- Environment temperature range: 0..50°C (operation) / -20..70°C (magazine/transport) non-condensing

OUTPUT AND SUPPLY ARE NOT ISOLATED: THE INPUT GROUND HAS THE SAME VOLTAGE POTENTIAL OF THE OUTPUT GROUND

FIG. 20 - 4V0056 connections

M1	PIN	FUNCTION	DESCRIPTION
2	1	OUT	Output voltage -10+10 Vdc (protected against short-circuit)
	2	GND	Output voltage reference


M2	PIN	FUNCTION	DESCRIPTION				
3	1	VIN	Power supply: +24V 5mA rated Range 830Vdc (protected against reverse polarity)				
2	2	GND	Negative of power supply				
	3	PE	Protection Earth				

М3	PIN	FUNCTION	DESCRIPTION			
	1	VP	Positive high voltage input			
2	2	n.c.	not connected			
3	3	VN	Negative high voltage input			

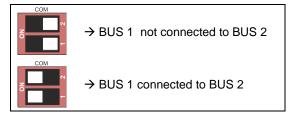
7.4 CONNECTION OF OPTIONAL CARDS

7.4.1 CAN BUS

The pin assignment of the optional card for CAN BUS communication is given here below.

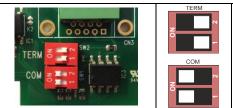
Code 274B000110VV

FIG. 21 – CAN bus card


On the card there are 2 double dip switches identified as:

- TERM
- COM

The contacts of the dip switch "TERM" (one for each CAN connector), if set to ON, enable the terminating resistor (120 Ω) between CAN H and CAN L.

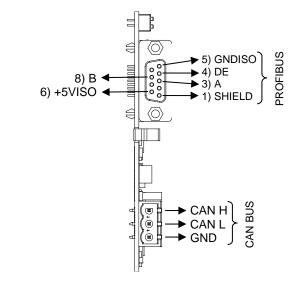

The contacts of the dip switch "COM" join the signals CAN L and CAN H of the two Buses so that the two connectors can be used one as input and one as output. The two dip switches shall always be positioned in pairs.

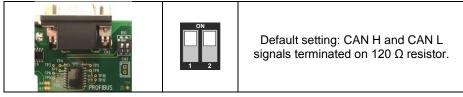
IF BUS 1 AND BUS 2 ARE CONNECTED TOGETHER, NEVER CONNECT BOTH THE TERMINATION RESISTORS (TERM dip switches).

Default setting: BUS 1 and BUS 2 connected together, but not terminated.

7.4.2 PROFIBUS

The pin assignment of the optional card for PROFIBUS – CAN BUS communication is given here below.




FIG. 22 – Profibus card

PIN n°	NAME	E DESCRIPTION			
1	Shield Protective shield				
2	-	-			
3	А	Rx/Tx positive data			
4	DE	Control signal for repeater			
5	GNDISO	0V of +5V supply			
6	+5VISO	Output supply +5V			
7	-	-			
8	В	Rx/Tx negative data			
9	-	-			

TAB. 20 – Profibus connections

On the card there is a double dip switch referred to as DS1 that, if closed, connects the signal CAN H and CAN L by means of a 120 Ω resistor for the line termination.

\rightarrow CAN H and CAN L terminated by 120 Ω resistor
\rightarrow CAN H and CAN L not terminated by resistor

7.4.3 ETHERCAT AND PROFINET

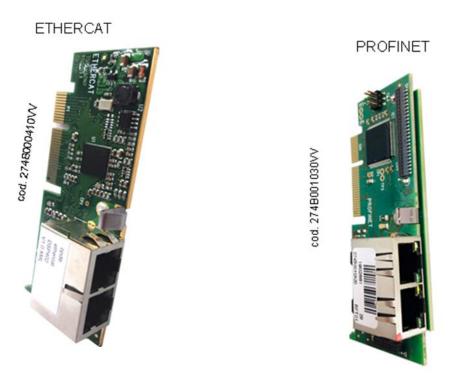


FIG. 23 – Ethercat card

FIG. 24 – Profinet card

The card is equipped with two interfaces 10/100 Base-T RJ45. The individual contacts of the RJ45 port are assigned according to the "T 568-B" standard.

Ethernet patch or crossover cables in **CAT5e** quality or better can be used as the connection cable. CAT5e is an Ethernet network cable standard defined by the EIA/TIA. CAT5e cable runs are limited to a maximum recommended run length of 100m.

BDF DIgital recommends shielded cables for environments where proximity to power cable, high power or RF equipments may introduce crosstalk.

Note that in the Ethercat there is an input and an output connector, while in the Profinet their order connection is free.

FIG. 25 - Type of cables

TALE ANYBUS Image: State
FIG. 26 – Anybus card

This board accommodates in slot3 of the drive, in addition to acting as an interface for ANYBUS communication, on request, can provide two connectors for a CAN single channel output (CAN A and CAN B).

The selection of CAN channel can make it through the SW1 dipswitch.

J1 jumper when closed, connects the CAN signal chosen, with a 120Ω resistance for termination of the line output.

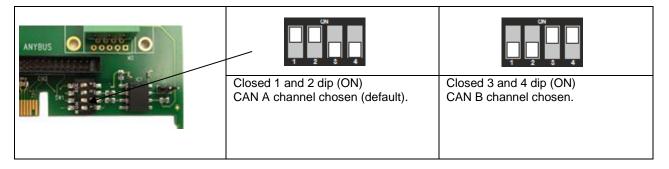
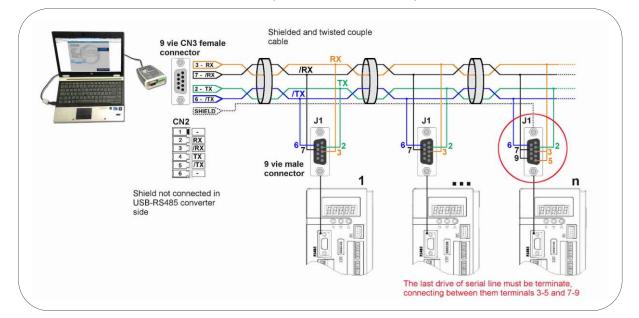


FIG. 27 – Anybus example



7.5 CONNECTION OF THE RS422/485 SERIAL LINE

The serial line present on the OPDE DC-DC drives foresees the connection for the "4-wire" transmission of data and, therefore, it has the ability to communicate in full-duplex mode. In fact, by virtue of the protocol used (MODBUS RTU) it always communicates in "half-duplex" mode. Therefore, it is possible to perform the connection with only "two wires" by connecting to one another **RX** with **TX and /RX with /TX**.

In the J1 connector, the RX and /RX signals are the signals received by the converter; while the TX and /TX signals are transmitted signals.

Here below there is an example of connection with a USB port using a suitable USB-RS422/485 converter.

FIG. 28 - Example of connection with USB port

Inside the converter there are the impedances to "terminate" the connection (120Ω) and polarize the line, as indicated in **FIG. 29**. To use such termination connect the terminals **5-3** and **9-7** of connector **J1** to one another (only for the last converter of the line).

The communication wires must be twisted.

The screen must be connected to the DB9 metal cap, because through the converter, the metallic cap is connected to ground.

Upon request, BDF Digital supplies a "serial package" consisting of the supervisor software and a cable with RS232/RS485 adapter. For further information consult the **OPDE booklet of the** MODBUS RTU serial protocol.

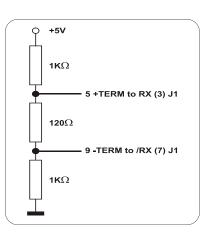


FIG. 29 – 120Ω Connections

TECHNICAL DATA 8

MOD. OPDE DC/DC ENERGY		OPDE SD 22	OPDE SD 32	OPDE SD 48	OPDE SD 60		
DC input data (Vbus)							
Maximum input voltage	[V d.c.]	780					
Operating voltage	[V d.c.]		200)÷730			
Maximum operating current	[A d.c.]	22	32	48	60		
Intermediate circuit capacity	[μF]	1010	1230	1640	2400		
Overvoltage category	OVC						
	Input data f	or auxiliary pov	ver supplies				
Auxiliary power for regulation card and drivers	[V d.c.]		24Vdc (22-	÷26Vdc) 1.6A			
Auxiliary power for the cooling fans	[V d.c.]	24Vdc (22÷26Vdc) 0.4A	24Vdc (22÷26Vdc) 0.4A	24Vdc (22÷26Vdc) 1ì0.5A	24Vdc (22÷26Vdc) 0.5A		
	DC	C output data (\	/o)				
Operating voltage	[V d.c.]		0÷	Vbus			
Output continuous current ⁽¹⁾	[A d.c.]	22	32	48	60		
Maximum output fault current	[A]	100 duration 2μs	145 duration 2μs	208 duration 2µs	260 duration 2μs		
Maximum output protection current	[A]	100	145	208	260		
Connection type		DC(+/-)					
Overvoltage category	OVC						
		Other data					
Operating temperature	[°C]		-20	÷ +50			
Maximum altitude ⁽²⁾ [m]		2000					
Insulation protection class	I						
Protection degree IP20							
PWM frequency [kHz]		10 (for each leg)					
Life ⁽³⁾	[kh]		30	30	30		

This chapter contains all the information for the correct use of the OPDE DC-DC.

⁽¹⁾ Total current (leg U + leg W). Calculated @ Fpwm=10 kHz, Vbus=650Vdc, no overload. For Vbus input voltage above 650 Vdc, derate ouput current.
 ⁽²⁾ For altitudes above 1000 m above sea level, derate the current by 1% per 100 m.
 ⁽³⁾ Calculated with converter running at maximum continuous current and at the maximum expected ambient temperature.

TAB. 21A – Technical data Book Size

MOD. OPDE DC/DC ENERGY		OPDE SD 70	OPDE SD 90	OPDE SD 110	OPDE SD 150		
DC input data (Vbus)							
Maximum input voltage	[V d.c.]	880					
Operating voltage	[V d.c.]		200)÷830			
Maximum operating current	[A d.c.]	73	95	109	155		
Intermediate circuit capacity	[μF]	2050	2870	3280	3280		
Overvoltage category	OVC						
	Input data f	or auxiliary pov	ver supplies				
Auxiliary power for regulation card and drivers	[V d.c.]		24Vdc (22-	÷26Vdc) 1.6A			
Auxiliary power for the cooling fans	[V d.c.]	24Vdc (22÷26Vdc) 1.5A	24Vdc (22÷26Vdc) 1.5A	24Vdc (22÷26Vdc) 1.5A	24Vdc (22÷26Vdc) 2.5A		
	DC	Coutput data (V	/o)				
Operating voltage	[V d.c.]		0÷	Vbus			
Output continuous current ⁽¹⁾	[A d.c.]	73	95	109	155		
Maximum output fault current	[A]	303 duration 5μs	394 duration 5µs	453 duration 5μs	640 duration 5μs		
Maximum output protection current	[A]	303	394	453	640		
Connection type		DC(+/-)					
Overvoltage category	OVC						
		Other data					
Operating temperature	[°C]		-20	÷ +50			
Maximum altitude ⁽²⁾	[m]	2000					
Insulation protection class		I					
Protection degree		IP20					
PWM frequency	[kHz]	z] 10 (for each leg)					
Life ⁽³⁾	[kh]	65	75	75	30		

⁽¹⁾ Total current (leg U + leg W). Calculated @ Fpwm=10 kHz, Vbus=650Vdc, no overload. For Vbus input voltage above 650 Vdc, derate ouput current according to Fig 30.
 ⁽²⁾ For altitudes above 1000 m above sea level, derate the current by 1% per 100 m.
 ⁽³⁾ Calculated with converter running at maximum continuous current and at the maximum expected ambient temperature.

TAB. 22B - Technical data Case1/Case1-C

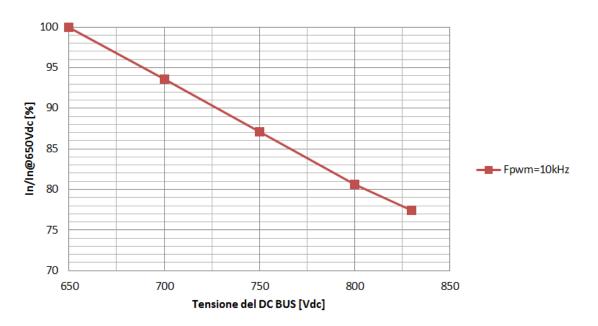


FIG. 30 - Case1/Case1-C current derating as function of Vbus

MOD. OPDE DC/DC ENERGY		OPDE SD 175	OPDE SD 220	OPDE SD 250						
DC input data (Vbus)										
Maximum input voltage [V d.c.] 880										
Operating voltage	[V d.c.]	200÷830								
Maximum operating current	[A d.c.]	209 267 302								
Intermediate circuit capacity	[μF]	13600	13600	13600						
Overvoltage category	OVC		III							
Inp	ut data for	auxiliary power su	pplies							
Auxiliary power for regulation card and drivers	[V d.c.]	24	4Vdc (22÷26Vdc) 1.6	6A						
Auxiliary power for the cooling fans	[V d.c.]	d.c.] 24Vdc (22÷26Vdc) 24Vdc (22÷26Vdc) 24Vdc 2.5A 3.5A 24Vdc								
	DC output data (Vo)									
Operating voltage	[V d.c.]		0÷Vbus							
Output continuous current ⁽¹⁾	[A d.c.]	209 267 302								
Maximum output fault current	[A]	582 duration 5µs 740 duration 5µs 839 duratio								
Maximum output protection current	[A]	582	740	839						
Connection type			DC(+/-)							
Overvoltage category	OVC		III							
		Other data								
Operating temperature	[°C]		-20 ÷ +50							
Maximum altitude ⁽²⁾	[m]	2000								
Insulation protection class										
Protection degree		IP20								
PWM frequency	[kHz]	10 (for each leg)								
Life ⁽³⁾	[kh]	75	45	30						

(1) Total current (leg U + leg W). Calculated @ Fpwm=10 kHz, Vbus=650Vdc, no overload. For Vbus input voltage above 650 Vdc, ⁽²⁾ For altitudes above 1000 m above sea level, derate the current by 1% per 100 m.
 ⁽³⁾ Calculated with converter running at maximum continuous current and at the maximum expected ambient temperature.

TAB. 24C – Technical data Case2

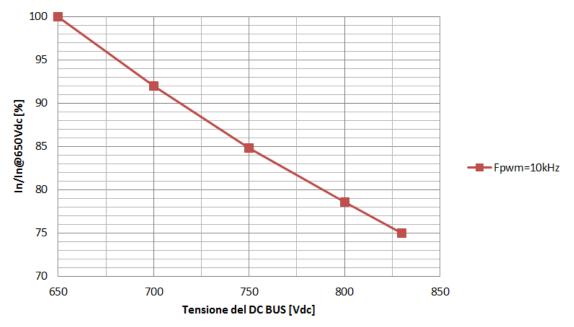


FIG. 31 - Case2/Case3 current derating as function of Vbus

MOD. OPDE DC/DC ENERGY		OPDE SD 310	OPDE SD 370	OPDE SD 460					
DC input data (Vbus)									
Maximum input voltage	[V d.c.]	880							
Operating voltage	[V d.c.]	200÷830							
Maximum operating current	[A d.c.]	373	373 444 550						
Intermediate circuit capacity	[μF]	20400	20400	20400					
Overvoltage category	OVC		III						
Inp	ut data foi	r auxiliary power su	pplies						
Auxiliary power for regulation card and drivers	[V d.c.]	24	4Vdc (22÷26Vdc) 1.6	6A					
Auxiliary power for the cooling fans	[V d.c.]	24Vdc (22÷26Vdc) 5.0A	24Vdc (22÷26Vdc) 5.0A	24Vdc (22÷26Vdc) 5.0A					
DC output data (Vo)									
Operating voltage	[V d.c.]		0÷Vbus						
Output continuous current ⁽¹⁾	[A d.c.]	373 444 550							
Maximum output fault current	[A]	1036 duration 5µs	1233 duration 5µs	1560 duration 5µs					
Maximum output protection current	[A]	1036	1233	1560					
Connection type			DC(+/-)						
Overvoltage category	OVC								
		Other data							
Operating temperature	[°C]	-20 ÷ +50							
Maximum altitude ⁽¹⁾	[m]	2000							
Insulation protection class	I								
Protection degree		IP20							
PWM frequency	[kHz]	10 (for each leg)							
Life ⁽²⁾	[kh]	50	30	30					

⁽¹⁾ Total current (leg U + leg W). Calculated @ Fpwm=10 kHz, Vbus=650Vdc, no overload. For Vbus input voltage above 650 Vdc, derate ouput current according to Fig 31.
 ⁽²⁾ For altitudes above 1000 m above sea level, derate the current by 1% per 100 m.
 ⁽³⁾ Calculated with converter running at maximum continuous current and at the maximum expected ambient temperature.

TAB. 24D – Technical data Case3

8.1 ELECTRIC CONNECTIONS

8.1.1 EXAMPLES OF CONNECTION

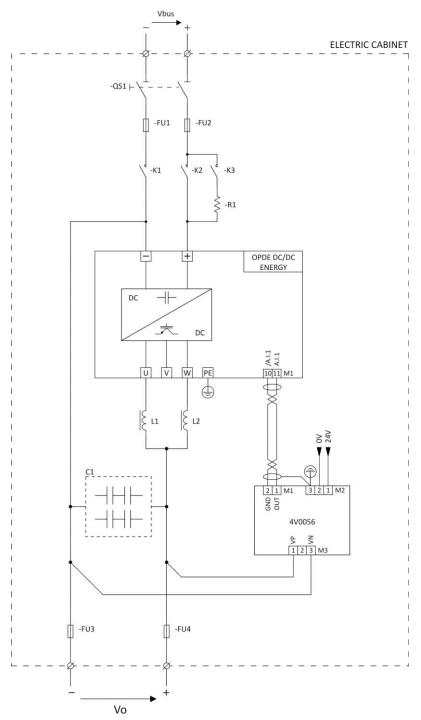


FIG. 32 - Example of connection with DC power supply (standard)

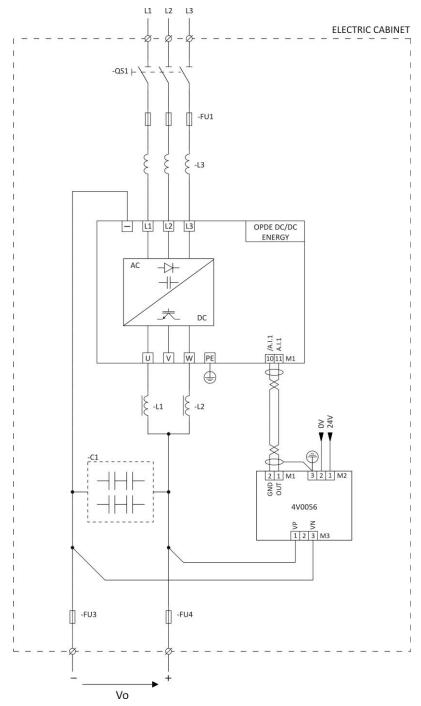


FIG. 33 - Example of connection with AC three-phase power supply (optional).

8.1.2 COMPONENTS FOR THE CONNECTION TO OUTPUT Vo

The OPDE DC/DC ENERGY require an external LC filter on output terminals U/W in order to generate the output voltage Vo. The filter is made by:

- Inductors L1-L2;
- capacitors bank C1.

Other components can be connected depending on the application:

- DC contactor K1 K2;
- pre-charge DCcontactor K3;
- protection fuse FU1;
- EMC filter.

The following section shows the features of the external components on the Vo side.

8.1.2.1 Output inductors

		Output inductors L1-L2					
Size OPDE SD	OPDE SD 15	OPDE SD 22	OPDE SD 32	OPDE SD 48	OPDE SD 60		
Inductance	[mH]	10.940	7.460	5.130	3.420	2.730	
Effective thermal current	[Arms]	7.9	11.6	16.8	25.2	31.5	
Effective overload current	[Arms]	9	13.2	19.2	28.8	36	
Overload				120% 30s			
Rated voltage	[Vdc]	830					
Rated frequency	[Hz]	0					
Current THD	[%lth]			7.3			
Switching frequency	[kHz]			10			
Ambient temperature	[°C]			50			
Cooling			Na	tural ventilati	ion		
Over temperature class		F					
Insulation class of materials		Н					
Insulation voltage	[kV]	1.1 / 3 for 30s					
BDF Digital code		054R48020 054R48021 054R48022 054R48023 054R480					

TAB. 23A - Output inductors

		Output inductors L1-L2				
Size OPDE SD	OPDE SD 70	OPDE SD 90	OPDE SD 110	OPDE SD 150		
Inductance	[mH]	2.250	1.730	1.510	1.060	
Effective thermal current	[Arms]	38.3	49.9	57.2	81.4	
Effective overload current	[Arms]	43.8	57.0	65.4	93.0	
Overload		120% 30s				
Rated voltage	[Vdc]	830				
Rated frequency	[Hz]	0				
Current THD	[%lth]		7	.3		
Switching frequency	[kHz]		1	0		
Ambient temperature	[°C]		5	0		
Cooling			Natural v	entilation		
Over temperature class		F				
Insulation class of materials		Н				
Insulation voltage	[kV]	1.1 / 3 for 30s				
BDF Digital code		054R47007 054R47008 054R47009 054R470				

TAB. 24B - Output inductors

	Output inductors L1-L2				
Size OPDE SD	OPDE SD 175	OPDE SD 220	OPDE SD 250		
Inductance [mH]	[mH]	0.785	0.543		
Effective thermal current [Arms]	[Arms]	109.7	140.2	158.6	
Effective overload current [Arms]	[Arms]	125.4	160.2	181.2	
Overload		120% 30s			
Rated voltage [Vdc]	[Vdc] 830				
Rated frequency [Hz]	[Hz]	0			
Current THD [% of thermal current]	[%lth]		7.3		
Switching frequency [kHz]	[kHz]	10			
Ambient temperature [° C]	[°C]		50		
Cooling		Na	tural ventilat	ion	
Overtemperature class		F			
Insulation class of materials		Н			
Insulation voltage [kV]	[kV]	/] 1.1 / 3 for 30s			
BDF Digital code	054R47011 054R47012 054R4				

TAB. 25B - Output inductors

	Output inductors L1-L2				
Size OPDE SD	OPDE SD 310	OPDE SD 370	OPDE SD 460		
Inductance [mH]	[mH]	0.440	0.298		
Effective thermal current [Arms]	[Arms]	195.8	233.1	288.8	
Effective overload current [Arms]	[Arms]	223.8	266.4	330	
Overload	120% 30s				
Rated voltage [Vdc]	[Vdc]	830			
Rated frequency [Hz]	0				
Current THD [% of thermal current]		7.3			
Switching frequency [kHz]	[kHz]	10			
Ambient temperature [° C]	[°C]	50			
Cooling		Na	tural ventilati	ion	
Overtemperature class		F			
Insulation class of materials	Н				
Insulation voltage [kV]	[kV]	1.1 / 3 for 30s			
BDF Digital code	054R47014	054R47015	054R47016		

TAB. 26B - Output inductors

Size OPDE SD	Capacitor bank for LC filter (Ft = 100 Hz / Start-up time = 12.8 ms @ lo=In Vo=415V)							
	0 1	Current	Peak	· · ·				/
	Capacity	@Fpmw	Current	Minimum voltage [Vdc]				
	[μF]	[Arms]	[A]					
OPDE SD 22	680	0.4	22					
OPDE SD 32	988	0.6	32	800				
OPDE SD 40	1 236	0.7	40					
OPDE SD 48	1 482	0.9	48					
OPDE SD 60	1 852	1.1	60					
OPDE SD 70	2 254	1.3	73	4				
OPDE SD 90	2 934	1.7	95					
OPDE SD 110	3 366	2.0	109					
OPDE SD 150	4 788	2.8	155					
OPDE SD 175	6 454	3.8	209	900				
OPDE SD 220	8 246	4.9	267					
OPDE SD 250	9 326	5.5	302					
OPDE SD 310	11 520	6.8	373					
OPDE SD 370 OPDE SD 460	13 712	8.1	444					
0FDE 5D 460	16 986	10.0	550 Exami	bles of usable capacitors				
	Capacity			Supplier	lpk	Ft		
	[µF]	MO	DEL	code [A] [Hz]			BDF Digital code	Quantity
OPDE SD 22	3400		EPCOS F 450V		57		06B7A5680T1	2: 1 string of 2 cap in series
OPDE SD 32	3400	B43584	EPCOS F 450V		57		06B7A5680T1	2: 1 string of 2 cap in series
OPDE SD 40	3400	B43584	EPCOS F 450V		57		06B7A5680T1	2: 1 string of 2 cap in series
OPDE SD 48	3400		EPCOS F 450V		57		06B7A5680T1	2: 1 string of 2 cap in series
OPDE SD 60	6 800		EPCOS F 450V		114		06B7A5680T1	4: 2 string of 2 cap in series
OPDE SD 70	6 800		EPCOS F 450V		114		06B7A5680T1	4: 2 string of 2 cap in series
OPDE SD 90	6 800		EPCOS F 450V		114		06B7A5680T1	4: 2 string of 2 cap in series
OPDE SD 110	6 800		EPCOS F 450V		114		06B7A5680T1	4: 2 string of 2 cap in series
OPDE SD 150	10 200		EPCOS F 450V		171		06B7A5680T1	6: 3 string of 2 cap in series
OPDE SD 175	13 600	B43584 EPCOS 6800uF 450V			228		06B7A5680T1	8: 4 string of 2 cap in series
OPDE SD 220	17 000	6800ul	B43584 EPCOS 6800uF 450V		285		06B7A5680T1	10: 5 string of 2 cap in series
OPDE SD 250	20 400	6800ul	EPCOS F 450V		342		06B7A5680T1	12: 6 string of 2 cap in series
OPDE SD 310	23 800	6800ul	EPCOS F 450V		399		06B7A5680T1	14: 7 string of 2 cap in series
OPDE SD 370	27 200	6800ul	EPCOS F 450V		456		06B7A5680T1	16: 8 string of 2 cap in series
OPDE SD 460	34 000		EPCOS F 450V		570		06B7A5680T1	20: 10 string of 2 cap in series

8.1.2.2 Output capacitor bank

TAB. 27 – Output capacitors

FOR THE SIZING OF THE OPTIONAL PRECHARGE RESISTORS AND OF THE RELATED PRECHARGE CONTACTOR, CONTACT BDF DIGITAL.

Via dell'Oreficeria, 41 36100 Vicenza - Italy Tel +39 0444 343555 Fax +39 0444 343509 www.bdfdigital.com